Quantized Feedback Control for Discrete-time Singular Systems

被引:0
作者
Shen, Jiawei [1 ]
Lin, Jinxing [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Jiangsu, Peoples R China
来源
2017 CHINESE AUTOMATION CONGRESS (CAC) | 2017年
基金
中国国家自然科学基金;
关键词
quantized feedback control; quantization dependent Lyapunov function; discrete-time singular systems; linear matrix inequality (LMI); H-INFINITY CONTROL; BOUNDED REAL LEMMA; STABILIZATION; STABILITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of quantized feedback control for discrete-time singular systems is discussed in this study. Firstly, by defining a quantization dependent Lyapunov function, one novel sufficient condition for the discrete-time singular system to be admissible is derived in terms of the linear matrix inequalities (LMIs). Then, a sufficient condition for the existence of the quantized state feedback controller is proposed in terms of strict LMIs. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:1303 / 1308
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1989, SINGULAR CONTROL SYS, DOI DOI 10.1007/BFB0002475
[2]   Further Enhancement on Robust H∞ Control Design for Discrete-Time Singular Systems [J].
Chadli, Mohammed ;
Darouach, Mohamed .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (02) :494-499
[3]   Novel bounded real lemma for discrete-time descriptor systems: Application to H∞ control design [J].
Chadli, Mohammed ;
Darouach, Mohamed .
AUTOMATICA, 2012, 48 (02) :449-453
[4]  
Feng Y., 2017, MATH PROBL ENG, V2017, P9, DOI DOI 10.1016/J.C0MP0SITESA.2017.09.014
[5]   On State Feedback H∞ Control for Discrete-Time Singular Systems [J].
Feng, Yu ;
Yagoubi, Mohamed .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (10) :2674-2679
[6]   Dissipative control and filtering of discrete-time singular systems [J].
Feng, Zhiguang ;
Lam, James .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (11) :2532-2542
[7]   The sector bound approach to quantized feedback control [J].
Fu, MY ;
Xie, LH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1698-1711
[8]   A new approach to quantized feedback control systems [J].
Gao, Huijun ;
Chen, Tongwen .
AUTOMATICA, 2008, 44 (02) :534-542
[9]   Robust state feedback H∞ control for uncertain linear discrete singular systems [J].
Ji, X. ;
Su, H. ;
Chu, J. .
IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01) :195-200
[10]  
Kalman R.E., 1956, P S NONLINEAR CIRCUI, P273