LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY

被引:80
作者
Weyant, Anja [1 ]
Schafer, Chad [2 ]
Wood-Vasey, W. Michael [1 ]
机构
[1] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh Particle Phys Astrophys & Cosmol Ctr P, Pittsburgh, PA 15260 USA
[2] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
cosmological parameters; methods: statistical; HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; PHOTOMETRY DATA RELEASE; CHAIN MONTE-CARLO; LIGHT CURVES; DARK ENERGY; LEGACY SURVEY; DATA SETS; CONSTRAINTS; OMEGA(LAMBDA);
D O I
10.1088/0004-637X/764/2/116
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Cosmological inference becomes increasingly difficult when complex data-generating processes cannot be modeled by simple probability distributions. With the ever-increasing size of data sets in cosmology, there is an increasing burden placed on adequate modeling; systematic errors in the model will dominate where previously these were swamped by statistical errors. For example, Gaussian distributions are an insufficient representation for errors in quantities like photometric redshifts. Likewise, it can be difficult to quantify analytically the distribution of errors that are introduced in complex fitting codes. Without a simple form for these distributions, it becomes difficult to accurately construct a likelihood function for the data as a function of parameters of interest. Approximate Bayesian computation (ABC) provides a means of probing the posterior distribution when direct calculation of a sufficiently accurate likelihood is intractable. ABC allows one to bypass direct calculation of the likelihood but instead relies upon the ability to simulate the forward process that generated the data. These simulations can naturally incorporate priors placed on nuisance parameters, and hence these can be marginalized in a natural way. We present and discuss ABC methods in the context of supernova cosmology using data from the SDSS-II Supernova Survey. Assuming a flat cosmology and constant dark energy equation of state, we demonstrate that ABC can recover an accurate posterior distribution. Finally, we show that ABC can still produce an accurate posterior distribution when we contaminate the sample with Type IIP supernovae.
引用
收藏
页数:15
相关论文
共 48 条
[1]   SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION [J].
Amanullah, R. ;
Lidman, C. ;
Rubin, D. ;
Aldering, G. ;
Astier, P. ;
Barbary, K. ;
Burns, M. S. ;
Conley, A. ;
Dawson, K. S. ;
Deustua, S. E. ;
Doi, M. ;
Fabbro, S. ;
Faccioli, L. ;
Fakhouri, H. K. ;
Folatelli, G. ;
Fruchter, A. S. ;
Furusawa, H. ;
Garavini, G. ;
Goldhaber, G. ;
Goobar, A. ;
Groom, D. E. ;
Hook, I. ;
Howell, D. A. ;
Kashikawa, N. ;
Kim, A. G. ;
Knop, R. A. ;
Kowalski, M. ;
Linder, E. ;
Meyers, J. ;
Morokuma, T. ;
Nobili, S. ;
Nordin, J. ;
Nugent, P. E. ;
Ostman, L. ;
Pain, R. ;
Panagia, N. ;
Perlmutter, S. ;
Raux, J. ;
Ruiz-Lapuente, P. ;
Spadafora, A. L. ;
Strovink, M. ;
Suzuki, N. ;
Wang, L. ;
Wood-Vasey, W. M. ;
Yasuda, N. .
ASTROPHYSICAL JOURNAL, 2010, 716 (01) :712-738
[2]   The Supernova Legacy Survey:: measurement of ΩM, ΩΛ and w from the first year data set [J].
Astier, P ;
Guy, J ;
Regnault, N ;
Pain, R ;
Aubourg, E ;
Balam, D ;
Basa, S ;
Carlberg, RG ;
Fabbro, S ;
Fouchez, D ;
Hook, IM ;
Howell, DA ;
Lafoux, H ;
Neill, JD ;
Palanque-Delabrouille, N ;
Perrett, K ;
Pritchet, CJ ;
Rich, J ;
Sullivan, M ;
Taillet, R ;
Aldering, G ;
Antilogus, P ;
Arsenijevic, V ;
Balland, C ;
Baumont, S ;
Bronder, J ;
Courtois, H ;
Ellis, RS ;
Filiol, M ;
Gonçalves, AC ;
Goobar, A ;
Guide, D ;
Hardin, D ;
Lusset, V ;
Lidman, C ;
McMahon, R ;
Mouchet, M ;
Mourao, A ;
Perlmutter, S ;
Ripoche, P ;
Tao, C ;
Walton, N .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (01) :31-U31
[3]  
Barlow R., 2003, ARXIVPHYSICS0306138
[4]  
Barnes C., 2011, ARXIV11066281
[5]  
Beaumont MA, 2002, GENETICS, V162, P2025
[6]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[7]  
Blum M. G. B., 2012, ARXIV12023819
[8]   Non-linear regression models for Approximate Bayesian Computation [J].
Blum, Michael G. B. ;
Francois, Olivier .
STATISTICS AND COMPUTING, 2010, 20 (01) :63-73
[9]   Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift [J].
Cameron, E. ;
Pettitt, A. N. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 425 (01) :44-65
[10]   THE RELATIONSHIP BETWEEN INFRARED, OPTICAL, AND ULTRAVIOLET EXTINCTION [J].
CARDELLI, JA ;
CLAYTON, GC ;
MATHIS, JS .
ASTROPHYSICAL JOURNAL, 1989, 345 (01) :245-256