Hydrodynamic and ballistic AC transport in two-dimensional Fermi liquids

被引:21
作者
Chandra, Mani [1 ]
Kataria, Gitansh [1 ]
Sahdev, Deshdeep [1 ]
Sundararaman, Ravishankar [2 ]
机构
[1] Quazar Technol, Res Div, New Delhi 110016, India
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
关键词
ELECTRON FLOW; RESISTANCE;
D O I
10.1103/PhysRevB.99.165409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electron transport in clean 2D systems with weak electron-phonon (e-ph) coupling can transition from an Ohmic to a ballistic or a hydrodynamic regime. The ballistic regime occurs when electron-electron (e-e) scattering is weak whereas the hydrodynamic regime arises when this scattering is strong. Despite this difference, we find that vortices and a negative nonlocal resistance believed to be quintessentially hydrodynamic are equally characteristic of the ballistic regime. These non-Ohmic regimes cannot be distinguished in DC transport without changing experimental conditions. Further, as our kinetic calculations show, the hydrodynamic regime in DC transport is highly fragile and is wiped out by even sparse disorder and e-ph scattering. We show that microwave-frequency AC sources by contrast readily excite hydrodynamic modes with current vortices that are robust to disorder and e-ph scattering. Indeed, current reversals in the non-Ohmic regimes occur via repeated vortex generation and mergers through reconnections, as in classical 2D fluids. Crucially, AC sources give rise to strong correlations across the entire device that unambiguously distinguish all regimes. These correlations in the form of nonlocal current-voltage and voltage-voltage phases directly check for the presence of a nonlocal current-voltage relation signifying the onset of non-Ohmic behavior as well as also for the dominance of bulk interactions, needed to confirm the presence of a hydrodynamic regime. We use these probes to demarcate all regimes in an experimentally realizable graphene device and find that the ballistic regime has a much larger extent in parameter space than the hydrodynamic regime.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons [J].
Alekseev, P. S. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)
[2]   Hydrodynamic Description of Transport in Strongly Correlated Electron Systems [J].
Andreev, A. V. ;
Kivelson, Steven A. ;
Spivak, B. .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[3]  
Ashcroft N.W., 1976, SOLID STATE PHYS
[4]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[5]   Fluidity onset in graphene [J].
Bandurin, Denis A. ;
Shytov, Andrey V. ;
Levitov, Leonid S. ;
Kumar, Roshan Krishna ;
Berdyugin, Alexey I. ;
Ben Shalom, Moshe ;
Grigorieva, Irina V. ;
Geim, Andre K. ;
Falkovich, Gregory .
NATURE COMMUNICATIONS, 2018, 9
[6]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[7]   Scanning gate microscopy in a viscous electron fluid [J].
Braem, B. A. ;
Pellegrino, F. M. D. ;
Principi, A. ;
Roeoesli, M. ;
Gold, C. ;
Hennel, S. ;
Koski, J., V ;
Berl, M. ;
Dietsche, W. ;
Wegscheider, W. ;
Polini, M. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW B, 2018, 98 (24)
[8]   Phonon emission from a 2D electron gas: Evidence of transition to the hydrodynamic regime [J].
Chow, E ;
Wei, HP ;
Girvin, SM ;
Shayegan, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (06) :1143-1146
[9]   Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene [J].
Crossno, Jesse ;
Shi, Jing K. ;
Wang, Ke ;
Liu, Xiaomeng ;
Harzheim, Achim ;
Lucas, Andrew ;
Sachdev, Subir ;
Kim, Philip ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Ohki, Thomas A. ;
Fong, Kin Chung .
SCIENCE, 2016, 351 (6277) :1058-1061
[10]   HYDRODYNAMIC ELECTRON FLOW IN HIGH-MOBILITY WIRES [J].
DEJONG, MJM ;
MOLENKAMP, LW .
PHYSICAL REVIEW B, 1995, 51 (19) :13389-13402