Machine learning approaches to decipher hormone and HER2 receptor status phenotypes in breast cancer

被引:6
作者
Adabor, Emmanuel S. [1 ,2 ]
Acquaah-Mensah, George K. [3 ]
机构
[1] African Inst Math Sci, 6 Melrose Rd, ZA-7945 Cape Town, South Africa
[2] Stellenbosch Univ, Stellenbosch, South Africa
[3] Massachusetts Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Pharmaceut Sci, Boston, MA USA
关键词
breast cancer; hormone receptor status; HER2 receptor status; machine learning; classification; POLYMERASE CHAIN-REACTION; GENE AMPLIFICATION; ESTROGEN-RECEPTOR; EXPRESSION; NETWORKS; SUBTYPES;
D O I
10.1093/bib/bbx138
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer prognosis and administration of therapies are aided by knowledge of hormonal and HER2 receptor status. Breast cancer lacking estrogen receptors, progesterone receptors and HER2 receptors are difficult to treat. Regarding large data repositories such as The Cancer Genome Atlas, available wet-lab methods for establishing the presence of these receptors do not always conclusively cover all available samples. To this end, we introduce median-supplement methods to identify hormonal and HER2 receptor status phenotypes of breast cancer patients using gene expression profiles. In these approaches, supplementary instances based on median patient gene expression are introduced to balance a training set from which we build simple models to identify the receptor expression status of patients. In addition, for the purpose of benchmarking, we examine major machine learning approaches that are also applicable to the problem of finding receptor status in breast cancer. We show that our methods are robust and have high sensitivity with extremely low false-positive rates compared with the well-established methods. A successful application of these methods will permit the simultaneous study of large collections of samples of breast cancer patients as well as save time and cost while standardizing interpretation of outcomes of such studies.
引用
收藏
页码:504 / 514
页数:11
相关论文
共 52 条
  • [1] SAGA: A hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks
    Adabor, Emmanuel S.
    Acquaah-Mensah, George K.
    Oduro, Francis T.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 53 : 27 - 35
  • [2] Problems and solutions in the evaluation of hormone receptors in breast cancer
    Allred, D. Craig
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (15) : 2433 - 2435
  • [3] Estrogen- and progesterone-receptor status in ECOG 2197: Comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory
    Badve, Sunil S.
    Baehner, Frederick L.
    Gray, Robert P.
    Childs, Barrett H.
    Maddala, Tara
    Liu, Mei-Lan
    Rowley, Steve C.
    Shak, Steven
    Perez, Edith D.
    Shulman, Lawrence J.
    Martino, Silvana
    Davidson, Nancy E.
    Sledge, George W.
    Goldstein, Lori J.
    Sparano, Joseph A.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (15) : 2473 - 2481
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
  • [6] Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    Chin, L.
    Meyerson, M.
    Aldape, K.
    Bigner, D.
    Mikkelsen, T.
    VandenBerg, S.
    Kahn, A.
    Penny, R.
    Ferguson, M. L.
    Gerhard, D. S.
    Getz, G.
    Brennan, C.
    Taylor, B. S.
    Winckler, W.
    Park, P.
    Ladanyi, M.
    Hoadley, K. A.
    Verhaak, R. G. W.
    Hayes, D. N.
    Spellman, Paul T.
    Absher, D.
    Weir, B. A.
    Ding, L.
    Wheeler, D.
    Lawrence, M. S.
    Cibulskis, K.
    Mardis, E.
    Zhang, Jinghui
    Wilson, R. K.
    Donehower, L.
    Wheeler, D. A.
    Purdom, E.
    Wallis, J.
    Laird, P. W.
    Herman, J. G.
    Schuebel, K. E.
    Weisenberger, D. J.
    Baylin, S. B.
    Schultz, N.
    Yao, Jun
    Wiedemeyer, R.
    Weinstein, J.
    Sander, C.
    Gibbs, R. A.
    Gray, J.
    Kucherlapati, R.
    Lander, E. S.
    Myers, R. M.
    Perou, C. M.
    McLendon, Roger
    [J]. NATURE, 2008, 455 (7216) : 1061 - 1068
  • [7] A BAYESIAN METHOD FOR THE INDUCTION OF PROBABILISTIC NETWORKS FROM DATA
    COOPER, GF
    HERSKOVITS, E
    [J]. MACHINE LEARNING, 1992, 9 (04) : 309 - 347
  • [8] High False- Negative Rate of HER2 Quantitative Reverse Transcription Polymerase Chain Reaction of the Oncotype DX Test: An Independent Quality Assurance Study
    Dabbs, David J.
    Klein, Molly E.
    Mohsin, Syed K.
    Tubbs, Raymond R.
    Shuai, Yongli
    Bhargava, Rohit
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (32) : 4279 - 4285
  • [9] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    [J]. MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [10] Friedman N, 1996, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P252