Hyperglycemia represents the main cause of complication of diabetes mellitus and oxidative stress, resulting from increased generation of reactive oxygen species (ROS), and plays a crucial role in their pathogenesis. Impairment of vascular responses in diabetic rats, as a result of an increase in superoxide (O-2(-)), formation is a major complication in diabetes. Since heme oxygenase (HO) expression regulates the level of ROS by increasing antioxidant, such as glutathione and bilirubin, we investigated whether upregulation of HO-1 modulates the levels of iNOS and eNOS and altered vascular responses to phenylephrine (PE) and acetylcholine (Ach) in aorta and femoral arteries of diabetic (streptozotocin (STZ)-induced) rats. Our results showed that iNOS expression was increased, but HO activity was reduced, in diabetic compared to nondiabetic rats (p < 0.05). Upregulation of HO-1 expression by cobalt protoporphyrin (CoPP), an inducer of HO-1 protein and activity, conferred an increase in eNOS and differentially decreased iNOS protein levels (p < 0.05). Isolated aortic and femoral arteries obtained from diabetic rats exhibited contraction to PE and relaxation to Ach, which were markedly increased and decreased, respectively. However, HO-1 induction in diabetic rats normalized relaxation compared to controls. Therefore, overexpression of HO-1 may mediate an increase in eNOS and a decrease in iNOS, potentially contributing to restoration of vascular responses in diabetic rats.