Rapid flow injection electrochemical detection of 3,3′,4,4′ tetrachlorobiphenyl using stabilized lipid membranes with incorporated sheep antibody

被引:3
作者
Nikolelis, Dimitrios P. [1 ]
Psaroudakis, Nikolas [3 ]
Michaloliakos, Antonis I. [1 ]
Nikoleli, Georgia-Paraskevi [2 ]
Scoullos, Michael [1 ]
机构
[1] Univ Athens, Dept Chem, Environm Chem Lab, GR-15771 Athens, Greece
[2] Natl Tech Univ Athens, Lab Inorgan & Analyt Chem, Sch Chem Engn, Dept 1, GR-15780 Athens, Greece
[3] Univ Athens, Dept Chem, Lab Inorgan Chem, GR-15771 Athens, Greece
来源
CENTRAL EUROPEAN JOURNAL OF CHEMISTRY | 2013年 / 11卷 / 02期
关键词
Congener; 77; Stabilized lipid films; Biosensor; Flow injection; Antibody regeneration; MICROWAVE-ASSISTED EXTRACTION; POLYCHLORINATED-BIPHENYLS; PCBS;
D O I
10.2478/s11532-012-0157-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An electrochemical biosensor based on a supported polymerized lipid film with incorporated sheep anti-3,3',4,4' tetrachlorobiphenyl (PCB congener 77) antibody using flow injection analysis was developed. The polymerized lipid film contained 85% (w/w) dipalmitoylphosphatidylcholine (DPPC) and 15% (w/w) dipalmitoylphosphatidic acid (DPPA), methacrylic acid, ethylene glycol dimethacrylate, AIBN and sheep anti-congener 77 antiserum. Congener 77 was injected into flowing carrier electrolyte and the flow stopped to detect the antigen. These membranes gave only a single transient proportional to log [congener 77] from 10(-8) to 10(-5) M, with a detection limit of ca. 10(-8) M. A membrane containing 35% (w/w) DPPA was used to examine regeneration. The maximum number of cycles was about 5.
引用
收藏
页码:320 / 323
页数:4
相关论文
共 37 条
  • [1] Rapid Flow Injection Electrochemical Detection of Arochlor 1242 Using Stabilized Lipid Membranes with Incorporated Sheep anti-PCB Antibody
    Michaloliakos, Antonis I.
    Nikoleli, Georgia-Paraskevi
    Siontorou, Christina G.
    Nikolelis, Dimitrios P.
    ELECTROANALYSIS, 2012, 24 (03) : 495 - 501
  • [2] Portable electrochemical aptasensor for highly sensitive detection of 3,3′,4,4′-tetrachlorobiphenyl
    Chen, Beibei
    Wang, Dou
    Wei, Shusheng
    Wang, Juan
    BIOSENSORS & BIOELECTRONICS, 2024, 260
  • [3] A microfluidic ratiometric electrochemical aptasensor for highly sensitive and selective detection of 3,3′,4,4′-tetrachlorobiphenyl
    Ji, Zhiheng
    Wang, Dou
    Wang, Juan
    ANALYTICAL METHODS, 2024, 16 (25) : 4160 - 4167
  • [4] Design of a simple and novel photoelectrochemical aptasensor for detection of 3,3′,4,4′-tetrachlorobiphenyl
    Fan, Lifang
    Zhang, Caiyun
    Shi, Huijie
    Zhao, Guohua
    BIOSENSORS & BIOELECTRONICS, 2019, 124 : 8 - 14
  • [5] Effect of composition and microstructure of humic acid on 3,3′,4,4′-tetrachlorobiphenyl sorption
    Dai, Shixiang
    Zhao, Ling
    Teng, Ying
    Wang, Xiaomi
    Ren, Wenjie
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (15) : 14656 - 14665
  • [6] Photoelectrochemical detection for 3,3′,4,4′-tetrachlorobiphenyl in fish based on synergistic effects by Schottky junction and sensitization
    Zhang, Cuizhong
    Chen, Peican
    Zhou, Liya
    Peng, Jinyun
    FOOD CHEMISTRY, 2022, 366
  • [7] In vitro modulation of prolactin mRNA by toxaphene and 3,3′,4,4′-tetrachlorobiphenyl
    Graham, M
    Cossette, L
    Gélinas, S
    Martinoli, MG
    ENVIRONMENTAL RESEARCH, 2003, 92 (03) : 207 - 212
  • [8] A real-time immuno-PCR method for detecting 3,3',4,4'-tetrachlorobiphenyl
    Chen, Han-Yu
    Zhuang, Hui-Sheng
    MICROCHIMICA ACTA, 2011, 172 (1-2) : 233 - 239
  • [9] Percutaneous Absorption of 3,3',4,4'-Tetrachlorobiphenyl (PCB 77) from Soil
    Roy, Timothy A.
    Hammerstrom, Karen
    Schaum, John
    JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2009, 72 (05): : 350 - 357
  • [10] Dechlorination of 3,3′,4,4′-tetrachlorobiphenyl in aqueous solution by hybrid Fe0/Fe3O4 nanoparticle system
    Wang, Yin
    Si, Xiongyuan
    Si, Youbin
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2015, 10 (15) : 1166 - 1179