Liquid flow through a diverging microchannel

被引:49
作者
Duryodhan, V. S. [1 ]
Singh, S. G. [2 ]
Agrawal, Amit [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Hyderabad 502205, Andhra Pradesh, India
关键词
Nonuniform microchannel; Single-phase flow; Poiseuille number; SUDDEN EXPANSION; MICROPUMP; VALVES; WATER;
D O I
10.1007/s10404-012-1022-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, experiments and three-dimensional numerical calculations of fluid flow through diverging microchannels were carried out with the aim of bringing out differences between flow in uniform and nonuniform passages. Deionized water was used as the working fluid in the experiments where the effects of mass flow rate (8.33 x 10(-6) to 8.33 x 10(-5) kg/s), microchannel hydraulic diameter (118-177 A mu m), length (10-30 mm) and divergence angle (4A degrees-16A degrees) on pressure drop were studied. The results are analyzed in detail with the help of numerical data. The pressure drop exhibits a linear dependence on the mass flow rate, whereas it is inversely proportional to the divergence angle and square of the hydraulic diameter. The pressure drop increases anomalously at 16A degrees, suggesting that flow reversal occurs between 12A degrees and 16A degrees, which agrees with the corresponding value at the conventional scale. For the purpose of predicting pressure drop using straight microchannel theory, an equivalent hydraulic diameter was defined. It is observed that the equivalent hydraulic diameter, located at one-third of the diverging microchannel length from the inlet, becomes mostly independent of the mass flow rate, microchannel hydraulic diameter, length and divergence angle. The pressure drop for a diverging microchannel becomes equal to an equivalent hydraulic diameter uniform cross-section microchannel, suggesting that conventional correlations for straight microchannels can also be applied to diverging microchannels. The data presented in this work are of fundamental importance and can help in optimization of diffuser design used for example in valveless micropumps.
引用
收藏
页码:53 / 67
页数:15
相关论文
共 29 条
[1]   Simulation of gas flow in microchannels with a sudden expansion or contraction [J].
Agrawal, A ;
Djenidi, L ;
Antonia, RA .
JOURNAL OF FLUID MECHANICS, 2005, 530 :135-144
[2]  
Agrawal A., 2011, Int. J. Micro Nano Scale Transp., V2, P1, DOI DOI 10.1260/1759-3093.2.1.1
[3]   PRESSURE DROP MEASUREMENTS WITH BOILING IN DIVERGING MICROCHANNEL [J].
Agrawal, Amit ;
Duryodhan, V. S. ;
Singh, S. G. .
FRONTIERS IN HEAT AND MASS TRANSFER, 2012, 3 (01)
[4]  
Akbari M., 2010, P 8 INT C FEDSM ICNM
[5]   Laminar Fully Developed Flow in Periodically Converging-Diverging Microtubes [J].
Akbari, Mohsen ;
Sinton, David ;
Bahrami, Majid .
HEAT TRANSFER ENGINEERING, 2010, 31 (08) :628-634
[6]  
[Anonymous], 2004, MICROFLOWS NANOFLOWS
[7]   Challenges in modeling gas-phase flow in microchannels: From slip to transition [J].
Barber, RW ;
Emerson, DR .
HEAT TRANSFER ENGINEERING, 2006, 27 (04) :3-12
[8]   Experimental determination of heat transfer coefficient in the slip regime and its anomalously low value [J].
Demsis, Anwar ;
Verma, Bhaskar ;
Prabhu, S. V. ;
Agrawal, Amit .
PHYSICAL REVIEW E, 2009, 80 (01)
[9]   Simple Channel Geometry for Enhancement of Chemical Reactions in Microchannels [J].
Fu, B. R. ;
Pan, Chin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (19) :9413-9422
[10]   The fluid mechanics of microdevices - The Freeman Scholar Lecture [J].
Gad-el-Hak, M .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1999, 121 (01) :5-33