Bioinspired Interfacial Materials: From Binary Cooperative Complementary Interfaces to Superwettability Systems

被引:32
作者
Fang, Ruochen [1 ]
Liu, Mingjie [1 ]
Liu, Hongliang [2 ]
Jiang, Lei [1 ,2 ]
机构
[1] Beihang Univ, Sch Chem, Minist Educ, Key Lab Bioinspired Smart Interfacial Sci & Techn, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Ctr Excellence Nanosci, CAS Key Lab Bioinspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
关键词
binary cooperative complementary; interfacial materials; superwettability; SUPERHYDROPHOBIC SURFACES; EMERGING APPLICATIONS; SUPER-HYDROPHOBICITY; STRUCTURAL COLOR; IONIC LIQUIDS; WATER; SMART; WETTABILITY; OIL; SEPARATION;
D O I
10.1002/admi.201701176
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this review, the binary cooperative complementary principle, which applies to two complementary states, has been proposed as a powerful law for construction of novel functional interfacial materials. The idea is to tune the distance between these two complementary components to match the characteristic length of certain physical interactions so that the cooperation between these complementary building blocks becomes dominant and thus endows the interfacial materials with unique properties. Since 2000, the binary cooperative complementarity for design of bioinspired superwettability systems has been applied by regulating the structural roughness to approximate to 100 nm to match the characteristic length of the hydrophobic interaction. It has been proved that the binary cooperative complementary law gains great success in constructing bioinspired superwettability systems. It is believed that much more novel interfacial materials with unique multifunctions will be generated following the binary cooperative complementary principle.
引用
收藏
页数:18
相关论文
共 130 条
[1]   Adhesive force of a single gecko foot-hair [J].
Autumn, K ;
Liang, YA ;
Hsieh, ST ;
Zesch, W ;
Chan, WP ;
Kenny, TW ;
Fearing, R ;
Full, RJ .
NATURE, 2000, 405 (6787) :681-+
[2]   Anomalous dispersions of 'hedgehog' particles [J].
Bahng, Joong Hwan ;
Yeom, Bongjun ;
Wang, Yichun ;
Tung, Siu On ;
Hoff, J. Damon ;
Kotov, Nicholas .
NATURE, 2015, 517 (7536) :596-599
[3]   Engineering - Shark skin and other solutions [J].
Ball, P .
NATURE, 1999, 400 (6744) :507-+
[4]   SURFACE ROUGHNESS AS RELATED TO HYSTERESIS OF CONTACT ANGLES .1. THE SYSTEM PARAFFIN WATER AIR [J].
BARTELL, FE ;
SHEPARD, JW .
JOURNAL OF PHYSICAL CHEMISTRY, 1953, 57 (02) :211-215
[5]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[6]   3-COMPONENT LANGMUIR-BLODGETT-FILMS WITH A CONTROLLABLE DEGREE OF POLARITY [J].
BERG, JM ;
ERIKSSON, LGT ;
CLAESSON, PM ;
BORVE, KGN .
LANGMUIR, 1994, 10 (04) :1225-1234
[7]   Phase inversion of particle-stabilized materials from foams to dry water [J].
Binks, Bernard P. ;
Murakami, Ryo .
NATURE MATERIALS, 2006, 5 (11) :865-869
[8]   Influence of particle wettability on the type and stability of surfactant-free emulsions [J].
Binks, BP ;
Lumsdon, SO .
LANGMUIR, 2000, 16 (23) :8622-8631
[9]   What happened before the big bang? [J].
Bojowald, Martin .
NATURE PHYSICS, 2007, 3 (08) :523-525
[10]   Light Switching of Molecules on Surfaces [J].
Browne, Wesley R. ;
Feringa, Ben L. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2009, 60 :407-428