INTRINSIC BRANCHING STRUCTURE WITHIN (L-1) RANDOM WALK IN RANDOM ENVIRONMENT AND ITS APPLICATIONS

被引:11
作者
Hong, Wenming [1 ]
Wang, Huaming [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Key Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
关键词
Random walk; branching process; random environment; density; TRANSIENT RANDOM-WALKS; RECURRENCE; TIMES;
D O I
10.1142/S0219025713500069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We figure out the intrinsic branching structure within (L-1) random walk in random environment. As applications, the branching structure enable us to calculate the expectation of the first hitting time directly, and specify the density of the invariant measure for the Markov chain of "the environment viewed from particles" explicitly.
引用
收藏
页数:14
相关论文
共 17 条
[1]   Recurrence and transience of random walks in random environments on a strip [J].
Bolthausen, E ;
Goldsheid, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :429-447
[2]   Random walks in random medium on Z and Lyapunov spectrum [J].
Brémont, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (03) :309-336
[3]   On some random walks on Z in random medium [J].
Brémont, J .
ANNALS OF PROBABILITY, 2002, 30 (03) :1266-1312
[4]   BRANCHING PROCESSES IN SIMPLE RANDOM-WALK [J].
DWASS, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (02) :270-274
[5]   Linear and sub-linear growth and the CLT for hitting times of a random walk in random environment on a strip [J].
Goldsheid, Ilya Ya. .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (3-4) :471-511
[6]   Simple transient random walks in one-dimensional random environment: the central limit theorem [J].
Goldsheid, Ilya Ya. .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (1-2) :41-64
[7]  
Hong W. M., 2010, PREPRINT
[8]  
Hong W. M., 2012, PREPRINT
[9]   BRANCHING STRUCTURE FOR THE TRANSIENT (1, R)-RANDOM WALK IN RANDOM ENVIRONMENT AND ITS APPLICATIONS [J].
Hong, Wenming ;
Zhang, Lin .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) :589-618
[10]  
KESTEN H, 1975, COMPOS MATH, V30, P145