Molecular Targeting Regulation of Proliferation and Differentiation of the Bone Marrow-Derived Mesenchymal Stem Cells or Mesenchymal Stromal Cells

被引:44
|
作者
Chen, Bei-Yu [2 ]
Wang, Xi [1 ]
Chen, Liang-Wei [1 ]
Luo, Zhuo-Jing [2 ]
机构
[1] Fourth Mil Med Univ, Inst Neurosci, Xian 710032, Peoples R China
[2] Fourth Mil Med Univ, Dept Orthoped, Xijing Hosp, Xian 710032, Peoples R China
基金
中国国家自然科学基金;
关键词
Bone marrow-derived MSC; MSC therapy; molecular targeting; tumorigenicity; immune modulation; GROWTH-FACTOR-BETA; OSTEOGENIC DIFFERENTIATION; OSTEOBLASTIC DIFFERENTIATION; IN-VITRO; SIGNALING PATHWAYS; CHONDROGENIC DIFFERENTIATION; MORPHOGENETIC PROTEIN-2; NEUROTROPHIC FACTOR; DOPAMINERGIC CELLS; LITHIUM-CHLORIDE;
D O I
10.2174/138945012799499749
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells (MSCs), with pluripotent differentiation capacity, present an ideal source for cell transplantation or tissue engineering therapies, but exact understanding of regulating mechanism underling MSC proliferation and differentiation remains a critical issue in securing their safe and efficient clinical application. This review outlines current knowledge regarding MSC cell surface biomarkers and molecular mechanisms of MSC differentiation and proliferation with emphasis on Wnt/beta-catenin signaling, Notch signaling pathway, bone morphogenesis proteins and various growth factors functioning in regulation of differentiation and proliferation of MSCs. Possible relation of oncogene and immunosuppressive activities of MSCs with tumorigenicity or tumor generation is also addressed for safe translational clinical application. Fast increase of MSC knowledge and techniques has led to some successful clinical trials and helped devising new tissue engineering therapies for bone and cartilage diseases that severely afflict human health. Production of adult MSC-derived functional neurons can further extend their therapeutic application in nerve injury and neurodegenerative diseases. It is promising that MSCs shall overcome ethical and immunorejection problems appeared in human embryonic stem cells, and specific molecular targeting manipulation may result in practical MSC therapy for personalized treatment of various diseases in the regeneration medicine.
引用
收藏
页码:561 / 571
页数:11
相关论文
共 50 条
  • [1] Bone marrow-derived mesenchymal stem cells
    Kemp, KC
    Hows, J
    Donaldson, C
    LEUKEMIA & LYMPHOMA, 2005, 46 (11) : 1531 - 1544
  • [2] Effects of dextran on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells
    Li, D.
    Dai, K.
    Tang, T.
    CYTOTHERAPY, 2008, 10 (06) : 587 - 596
  • [3] Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells
    Ming Guan
    Yaping Xu
    Wei Wang
    Shan Lin
    European Cytokine Network, 2014, 25 : 58 - 63
  • [4] Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells
    Tropel, Philippe
    Platet, Nadine
    Platel, Jean-Claude
    Noel, Daniele
    Albrieux, Mireille
    Benabid, Alim-Louis
    Berger, Francois
    STEM CELLS, 2006, 24 (12) : 2868 - 2876
  • [5] Differentiation into neurons of rat bone marrow-derived mesenchymal stem cells
    Guan, Ming
    Xu, Yaping
    Wang, Wei
    Lin, Shan
    EUROPEAN CYTOKINE NETWORK, 2014, 25 (03) : 58 - 63
  • [6] Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation
    Zheng, Ke
    Chen, Ying
    Huang, Wenwen
    Lin, Yinan
    Kaplan, David L.
    Fan, Yimin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) : 14406 - 14413
  • [7] Sonic hedgehog enhances the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells
    Cai, Jia-Qin
    Huang, Yi-Zhou
    Chen, Xiao-He
    Xie, Hong-Lei
    Zhu, Hong-Ming
    Tang, Li
    Yang, Zhi-Ming
    Huang, Yong-Can
    Deng, Li
    CELL BIOLOGY INTERNATIONAL, 2012, 36 (04) : 349 - 355
  • [8] Sonic hedgehog promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells in vitro
    Warzecha, JJP
    Goettig, S
    Lucarelli, E
    Kurth, A
    BONE, 2005, 36 : S176 - S176
  • [9] BONE MARROW-DERIVED MESENCHYMAL STEM CELLS UPREGULATE ENDOMETRIAL STROMAL CELL MIGRATION BUT NOT PROLIFERATION.
    Zhao, Qingshi
    Naaldijk, Yahaira
    Sandiford, Oleta A.
    Marchetto, Nicole M.
    Douglas, Nataki C.
    Rameshwar, Pranela
    Morelli, Sara S.
    FERTILITY AND STERILITY, 2020, 114 (03) : E100 - E100
  • [10] Molecular fingerprint of subsets of human bone marrow-derived mesenchymal stromal cells
    Kuci, Selim
    Kuci, Zyrafete
    Schaefer, Richard
    Spohn, Gabriele
    Winter, Stefan
    Klingebiel, Thomas
    Bader, Peter
    BONE MARROW TRANSPLANTATION, 2018, 53 : 683 - 683