WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION AND A RELATED CHARACTERIZATION OF HILBERT SPACES

被引:0
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
来源
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND | 2011年 / 31卷 / 02期
关键词
Martingale; square function; weak type inequality; Banach space; Hilbert space;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be a martingale taking values in a Banach space B and let S (f) be its square function. We show that if B is a Hilbert space, then P(S(f) >= 1) <= root e parallel to f parallel to(1) and the constant root e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 7 条
[1]  
Burkholder D. L., 1989, ALMOST EVERYWHERE CO, P159
[2]  
BURKHOLDER D. L., 1991, LECT NOTES MATH, V1464, P1
[3]  
Burkholder D.L., 1981, PROBABILITY BANACH S, V860, P35
[6]   ON BURKHOLDER BICONVEX-FUNCTION CHARACTERIZATION OF HILBERT-SPACES [J].
LEE, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (02) :555-559
[7]   MARTINGALES WITH VALUES IN UNIFORMLY CONVEX-SPACES [J].
PISIER, G .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) :326-350