PROBABILITY AND MATHEMATICAL STATISTICS-POLAND
|
2011年
/
31卷
/
02期
关键词:
Martingale;
square function;
weak type inequality;
Banach space;
Hilbert space;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let f be a martingale taking values in a Banach space B and let S (f) be its square function. We show that if B is a Hilbert space, then P(S(f) >= 1) <= root e parallel to f parallel to(1) and the constant root e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 7 条
[1]
Burkholder D. L., 1989, ALMOST EVERYWHERE CO, P159
[2]
BURKHOLDER D. L., 1991, LECT NOTES MATH, V1464, P1
[3]
Burkholder D.L., 1981, PROBABILITY BANACH S, V860, P35