WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION AND A RELATED CHARACTERIZATION OF HILBERT SPACES

被引:0
作者
Osekowski, Adam [1 ]
机构
[1] Univ Warsaw, Dept Math Informat & Mech, PL-02097 Warsaw, Poland
来源
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND | 2011年 / 31卷 / 02期
关键词
Martingale; square function; weak type inequality; Banach space; Hilbert space;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be a martingale taking values in a Banach space B and let S (f) be its square function. We show that if B is a Hilbert space, then P(S(f) >= 1) <= root e parallel to f parallel to(1) and the constant root e is the best possible. This extends the result of Cox, who established this bound in the real case. Next, we show that this inequality characterizes Hilbert spaces in the following sense: if B is not a Hilbert space, then there is a martingale f for which the above weak-type estimate does not hold.
引用
收藏
页码:227 / 238
页数:12
相关论文
共 7 条