Genetic effects on fitness of the mutant sugary1 in wild-type maize

被引:6
|
作者
Djemel, A. [1 ]
Ordas, B. [1 ]
Khelifi, L. [2 ]
Ordas, A. [1 ]
Revilla, P. [1 ]
机构
[1] Mis Biol Galicia CSIC, E-36080 Pontevedra, Spain
[2] Ecole Natl Super Agron, El Harrach Alger 16000, Algeria
来源
JOURNAL OF AGRICULTURAL SCIENCE | 2012年 / 150卷
关键词
FIELD CORN POPULATIONS; IMPROVE SWEET CORN; EUROPEAN CONDITIONS; HETEROTIC PATTERNS; EARLY VIGOR; ADAPTATION; ENDOSPERM; IDENTIFICATION; PERFORMANCE; FREQUENCY;
D O I
10.1017/S0021859611000712
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Knowing the genetic regulation of fitness is crucial for using mutants in breeding programmes, particularly when the mutant is deleterious in some genetic backgrounds, as it happens with the sweet corn mutant sugary1 (su1) in maize (Zea mays L.). The fitness and genetic effects of maize mutant su1 were monitored through five successive selfing generations in two separated mean-generation designs. The first involved two inbreds with similar genetic backgrounds, while unrelated inbreds were used for the second design. Parents, F(1)s, F(2)s, and backcrosses were crossed to P39 as the donor of su1 and the 12 crosses were successively self-pollinated for 5 years. The su1 frequency decreased linearly across selfing generations in both designs. Additive effects were significant for su1 seed viability. However, dominance effects were of higher magnitude than additive effects, even though the dominance effects were not significant. Genetic effects depended on genotypes and environments. Therefore, the fitness of su1 is under genetic control, with significant additive effects due to minor contributions of multiple genes. The fitness of su1 is strongly affected by maize genotypic background and environment. It is hypothesized that genotypes could have evolutionary potential for modulating the fitness of single mutations.
引用
收藏
页码:603 / 609
页数:7
相关论文
共 50 条
  • [31] Cellular trafficking of wild-type and mutant myocilin
    Jacobson, N
    Shepard, AR
    Clark, AF
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 237A - 237A
  • [32] PHOTORESPONSES OF WILD-TYPE AND MUTANT DIKARYONS OF CHLAMYDOMONAS
    HIRSCHBERG, R
    HUTCHINSON, W
    CURRENT MICROBIOLOGY, 1980, 4 (05) : 287 - 291
  • [33] WILD-TYPE AND MUTANT STOCKS OF ASPERGILLUS NIDULANS
    BARRATT, RW
    JOHNSON, GB
    OGATA, WN
    GENETICS, 1965, 52 (01) : 233 - &
  • [34] Neuromuscular synaptogenesis in wild-type and mutant zebrafish
    Panzer, JA
    Gibbs, SA
    Dosch, R
    Wagner, D
    Mullins, MC
    Granato, M
    Balice-Gordon, RJ
    DEVELOPMENTAL BIOLOGY, 2005, 285 (02) : 340 - 357
  • [35] Model for kinetics of wild-type and mutant kinesins
    Xie, P
    Dou, SX
    Wang, PY
    BIOSYSTEMS, 2006, 84 (01) : 24 - 38
  • [36] A DATABASE OF RECOMBINANT WILD-TYPE AND MUTANT SERPINS
    PATSTON, PA
    GETTINS, PGW
    THROMBOSIS AND HAEMOSTASIS, 1994, 72 (02) : 166 - 179
  • [37] Cancer: From Wild-Type to Mutant Huntingtin
    Thion, Morgane Sonia
    Humbert, Sandrine
    JOURNAL OF HUNTINGTONS DISEASE, 2018, 7 (03) : 201 - 208
  • [38] ONCOGENICITY OF WILD-TYPE AND MUTANT STRAINS OF POLYOMA
    SIEGLER, R
    BENJAMIN, T
    PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, 1975, 16 (MAR): : 99 - 99
  • [39] NEUROPHYSIOLOGY OF FLIGHT IN WILD-TYPE AND A MUTANT DROSOPHILA
    LEVINE, JD
    WYMAN, RJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (04) : 1050 - 1054
  • [40] In vivo activity of wild-type and mutant PAKs
    King, CC
    Sanders, LC
    Bokoch, GM
    REGULATORS AND EFFECTORS OF SMALL GTPASES, PT D, 2000, 325 : 315 - 327