Statistical inference with simulated likelihood functions

被引:0
|
作者
Lee, LF [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Econ, Kowloon, Peoples R China
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers classical test statistics, namely, the likelihood ratio, efficient score, and Wald statistics, for econometric models under simulation estimation. The simulated likelihood ratio, simulated efficient score, and simulated Wald test statistics are shown to be asymptotically equivalent. Because the simulated score vector can be asymptotically biased, limiting distributions of these simulated statistics can be asymptotically noncentral chi(2) distributed. This paper studies inference issues with various simulated test statistics. Monte Carlo results are also provided to compare and demonstrate finite sample properties of simulated test statistics.
引用
收藏
页码:337 / 360
页数:24
相关论文
共 50 条
  • [1] Statistical Inference for Simulated Powders
    Picka, Jeffrey D.
    POWDERS AND GRAINS 2009, 2009, 1145 : 207 - 210
  • [2] STATISTICAL-INFERENCE - LIKELIHOOD TO SIGNIFICANCE
    FRASER, DAS
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (414) : 258 - 265
  • [3] Robust likelihood functions in Bayesian inference
    Greco, Luca
    Racugno, Walter
    Ventura, Laura
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (05) : 1258 - 1270
  • [4] On empirical likelihood statistical functions
    Yuan, Ao
    Xu, Jinfeng
    Zheng, Gang
    JOURNAL OF ECONOMETRICS, 2014, 178 : 613 - 623
  • [5] STATISTICAL-INFERENCE - THE USE OF THE LIKELIHOOD FUNCTION
    VINCENT, P
    HAWORTH, J
    AREA, 1984, 16 (02) : 131 - 146
  • [6] Advances in Statistical Inference: Bayesian and likelihood interplay
    Fulvio De Santis
    Laura Ventura
    METRON, 2014, 72 (2) : 123 - 124
  • [7] Statistical inference in massive datasets by empirical likelihood
    Xuejun Ma
    Shaochen Wang
    Wang Zhou
    Computational Statistics, 2022, 37 : 1143 - 1164
  • [8] Statistical inference in massive datasets by empirical likelihood
    Ma, Xuejun
    Wang, Shaochen
    Zhou, Wang
    COMPUTATIONAL STATISTICS, 2022, 37 (03) : 1143 - 1164
  • [9] Advances in Statistical Inference: Bayesian and likelihood interplay
    De Santis, Fulvio
    Ventura, Laura
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2014, 72 (02): : 123 - 124
  • [10] Likelihood functions for inference in the presence of a nuisance parameter
    Severini, TA
    BIOMETRIKA, 1998, 85 (03) : 507 - 522