Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

被引:9
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Algebraic independence; Fibonacci numbers; Lucas numbers; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem;
D O I
10.1007/s11139-007-9019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers Sigma(infinity)(n=1) F-2n-1(-1), Sigma(infinity)(n=1) F-2n-1(-2) (n=1), Sigma(infinity)(n=1) F(2n-1)(-3)and write each Sigma(infinity)(n=1) F-2n-1(-s) (s >= 4) as an explicit rational function of these three numbers over Q. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
  • [41] Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers
    Matala-Aho, Tapani
    Prevost, Marc
    RAMANUJAN JOURNAL, 2006, 11 (02) : 249 - 261
  • [42] Sums of Pell/Lucas Polynomials and Fibonacci/Lucas Numbers
    Guo, Dongwei
    Chu, Wenchang
    MATHEMATICS, 2022, 10 (15)
  • [43] ON FACTORIALS EXPRESSIBLE AS SUMS OF AT MOST THREE FIBONACCI NUMBERS
    Luca, Florian
    Siksek, Samir
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 747 - 763
  • [44] Algebraic independence of reciprocal sums of binary recurrences II
    Nishioka, K
    MONATSHEFTE FUR MATHEMATIK, 2002, 136 (02): : 123 - 141
  • [45] Some Infinite Sums Related to the k-Fibonacci Numbers
    Karaoglu, Onur
    Uslu, Kemal
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 651 - 659
  • [46] A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers
    Daniel Duverney
    Carsten Elsner
    Masanobu Kaneko
    Yohei Tachiya
    Research in Number Theory, 2022, 8
  • [47] A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers
    Duverney, Daniel
    Elsner, Carsten
    Kaneko, Masanobu
    Tachiya, Yohei
    RESEARCH IN NUMBER THEORY, 2022, 8 (02)
  • [48] Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers
    Kaneko, Hajime
    Kurosawa, Takeshi
    Tachiya, Yohei
    Tanaka, Taka-aki
    ACTA ARITHMETICA, 2015, 168 (02) : 161 - 186
  • [49] A new method to compute the terms of generalized order-k Fibonacci numbers
    Kaygisiz, Kenan
    Sahin, Adem
    JOURNAL OF NUMBER THEORY, 2013, 133 (09) : 3119 - 3126
  • [50] Fibonacci numbers with prime subscripts: Digital sums for primes versus composites
    Leyendekkers, J. V.
    Shannon, A. G.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (03) : 45 - 49