Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers

被引:9
|
作者
Elsner, Carsten [1 ]
Shimomura, Shun [2 ]
Shiokawa, Iekata [2 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, FHDW Hannover, D-30173 Hannover, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
Algebraic independence; Fibonacci numbers; Lucas numbers; Jacobian elliptic functions; Ramanujan functions; q-series; Nesterenko's theorem;
D O I
10.1007/s11139-007-9019-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the algebraic independence of the reciprocal sums of odd terms in Fibonacci numbers Sigma(infinity)(n=1) F-2n-1(-1), Sigma(infinity)(n=1) F-2n-1(-2) (n=1), Sigma(infinity)(n=1) F(2n-1)(-3)and write each Sigma(infinity)(n=1) F-2n-1(-s) (s >= 4) as an explicit rational function of these three numbers over Q. Similar results are obtained for various series including the reciprocal sums of odd terms in Lucas numbers.
引用
收藏
页码:429 / 446
页数:18
相关论文
共 50 条
  • [31] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Wang, Andrew Y. Z.
    Wen, Peibo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [32] On the partial finite sums of the reciprocals of the Fibonacci numbers
    Andrew YZ Wang
    Peibo Wen
    Journal of Inequalities and Applications, 2015
  • [33] Fibonacci numbers which are sums of three factorials
    Bollman, Mark
    Hernandez Hernandez, Santos
    Luca, Florian
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (1-2): : 211 - 224
  • [34] Algebraic independence of reciprocal sums of binary recurrences
    Kumiko Nishioka
    Monatshefte für Mathematik, 1997, 123 : 135 - 148
  • [35] Algebraic independence of reciprocal sums of binary recurrences
    Nishioka, K
    MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02): : 135 - 148
  • [36] Algebraic independence of infinite products generated by Fibonacci and Lucas numbers
    Luca, Florian
    Tachiya, Yohei
    HOKKAIDO MATHEMATICAL JOURNAL, 2014, 43 (01) : 1 - 20
  • [37] Algebraic independence results for the infinite products generated by Fibonacci numbers
    Luca, Florian
    Tachiya, Yohei
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 165 - 173
  • [38] Algebraic independence of certain infinite products involving the Fibonacci numbers
    Duverney, Daniel
    Tachiya, Yohei
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2021, 97 (05) : 29 - 31
  • [39] On sums of two Fibonacci numbers that are powers of numbers with limited hamming weight
    Vukusic, Ingrid
    Ziegler, Volker
    QUAESTIONES MATHEMATICAE, 2024, 47 (04) : 851 - 869
  • [40] GENERALIZED GAUSSIAN FIBONACCI NUMBERS AND SUMS BY MATRIX METHODS
    Asci, Mustafa
    Lee, Gwang Yeon
    UTILITAS MATHEMATICA, 2017, 102 : 349 - 357