Nanotin alloys supported by multiwall carbon nanotubes as high-capacity and safer anode materials for EV lithium batteries

被引:25
作者
Menkin, S. [1 ]
Barkay, Z. [2 ]
Golodnitsky, D. [1 ,2 ]
Peled, E. [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Wolfson Appl Mat Res Ctr, IL-69978 Tel Aviv, Israel
关键词
Li-ion battery; Electroless; Tin alloy; Carbon nanotubes; COMPOSITE ANODE; ION; PERFORMANCE; FABRICATION; ELECTRODE;
D O I
10.1016/j.jpowsour.2013.06.131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Much effort has been expended in the search for new lithium-containing anode materials. Alloy anodes based on tin are known for their high specific capacity and safety characteristics. The theoretical specific capacities of alloy anodes are 2-10 times that of graphite. The second merit of alloy anodes is their moderate operation potential versus lithium. For example, Sn anodes have an onset-voltage potential of 0.6 V above that of Li/Li+. This moderate potential averts the danger of lithium deposition which is present in the case of graphite anodes (similar to 0.05 V vs. Li). This study is directed to the synthesis and characterization of nanotin powders supported by multiwall carbon nanotubes (MWCNT). Modified electroless deposition (ELD) was used for the preparation of high-surface area tin-alloy nanosized anodes. In this work, it was found that the use of nanoparticles of tin deposited on multiwall carbon nanotubes, enables prolonged cycling of a tin-composite anode in a lithium-ion battery. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 351
页数:7
相关论文
共 37 条
[1]   Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery [J].
Ahn, Dongjoon ;
Xiao, Xingcheng ;
Li, Yawen ;
Sachdev, Anil K. ;
Park, Hey Woong ;
Yu, Aiping ;
Chen, Zhongwei .
JOURNAL OF POWER SOURCES, 2012, 212 :66-72
[2]  
[Anonymous], Patent No. [US4269625, 4269625]
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   A high power Sn-C/C-LiFePO4 lithium ion battery [J].
Brutti, Sergio ;
Hassoun, Jusef ;
Scrosati, Bruno ;
Lin, Chi-Yen ;
Wu, Han ;
Hsieh, Han-Wei .
JOURNAL OF POWER SOURCES, 2012, 217 :72-76
[5]  
Byeon J.H., 2008, J HWANG SURFACE COAT, V203, P357
[6]   Tin nanoparticles formed in the presence of cellulose fibers exhibit excellent electrochemical performance as anode materials in lithium-ion batteries [J].
Caballero, A ;
Morales, J ;
Sánchez, L .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (09) :A464-A466
[7]   New easy way preparation of core/shell structured SnO2@carbon spheres and application for lithium-ion batteries [J].
Chen, Xuecheng ;
Kierzek, Krzysztof ;
Wilgosz, Karolina ;
Machnikowski, Jacek ;
Gong, Jiang ;
Feng, Jingdong ;
Tang, Tao ;
Kalenczuk, Ryszard J. ;
Chen, Hongmin ;
Chu, Paul K. ;
Mijowska, Ewa .
JOURNAL OF POWER SOURCES, 2012, 216 :475-481
[8]   Ab initio calculation of the lithium-tin voltage profile [J].
Courtney, IA ;
Tse, JS ;
Mao, O ;
Hafner, J ;
Dahn, JR .
PHYSICAL REVIEW B, 1998, 58 (23) :15583-15588
[9]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[10]   Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries [J].
Ferguson, P. P. ;
Todd, A. D. W. ;
Dahn, J. R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (01) :25-31