Filtering-based recursive least-squares identification algorithm for controlled autoregressive moving average systems using the maximum likelihood principle

被引:10
作者
Li, Junhong [1 ,2 ]
Ding, Feng [2 ]
机构
[1] Nantong Univ, Sch Elect Engn, Nantong, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Recursive identification; data filtering; maximum likelihood; least squares; parameter estimation; MELT INDEX PREDICTION; PARAMETER-ESTIMATION ALGORITHMS; FAULT-TOLERANT CONTROL; ITERATIVE ESTIMATION; HAMMERSTEIN SYSTEMS; STATE;
D O I
10.1177/1077546314523634
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper considers the parameter estimation problem of controlled autoregressive moving average systems. The basic idea is to use the noise polynomial to filter the input-output data, then a controlled moving average identification model and a noise model are obtained. A maximum likelihood recursive least squares algorithm and a recursive least squares algorithm are used to interactively estimate the parameters of the two identification models by using the hierarchical identification principle. A numerical example is provided to show the effectiveness of the proposed algorithms.
引用
收藏
页码:3098 / 3106
页数:9
相关论文
共 51 条
[51]   Estimation of Best Mounting Positions for Vibratory Equipment in Buildings [J].
Zu, Fenglei ;
Mak, Cheuk Ming .
JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (02) :301-310