共 51 条
Filtering-based recursive least-squares identification algorithm for controlled autoregressive moving average systems using the maximum likelihood principle
被引:10
作者:
Li, Junhong
[1
,2
]
Ding, Feng
[2
]
机构:
[1] Nantong Univ, Sch Elect Engn, Nantong, Jiangsu, Peoples R China
[2] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Recursive identification;
data filtering;
maximum likelihood;
least squares;
parameter estimation;
MELT INDEX PREDICTION;
PARAMETER-ESTIMATION ALGORITHMS;
FAULT-TOLERANT CONTROL;
ITERATIVE ESTIMATION;
HAMMERSTEIN SYSTEMS;
STATE;
D O I:
10.1177/1077546314523634
中图分类号:
O42 [声学];
学科分类号:
070206 ;
082403 ;
摘要:
This paper considers the parameter estimation problem of controlled autoregressive moving average systems. The basic idea is to use the noise polynomial to filter the input-output data, then a controlled moving average identification model and a noise model are obtained. A maximum likelihood recursive least squares algorithm and a recursive least squares algorithm are used to interactively estimate the parameters of the two identification models by using the hierarchical identification principle. A numerical example is provided to show the effectiveness of the proposed algorithms.
引用
收藏
页码:3098 / 3106
页数:9
相关论文