A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES

被引:37
|
作者
Pikhurko, Oleg [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
GRAPHS; NUMBER;
D O I
10.1090/s0002-9939-2012-11274-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Turan function ex(n, F) is the maximum number of edges in an F-free graph on n vertices. The question of estimating this function for F = C-2k, the cycle of length 2k, is one of the central open questions in this area that goes back to the 1930s. We prove that ex(n, C-2k) <= (k - 1)n(1+1/k) + 16(k - 1)n, improving the previously best known general upper bound of Verstraete [Combin. Probab. Computing 9 (2000), 369-373] by a factor 8 + o(1) when n >> k.
引用
收藏
页码:3687 / 3692
页数:6
相关论文
共 50 条
  • [41] Note on the Group Distance Magic Labeling of Direct Product of Two Cycles
    Deng, Guixin
    Wang, Zhijuan
    Xie, Zikang
    Zeng, Xiangneng
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2025, 51 (02)
  • [42] A Note on Long non-Hamiltonian Cycles in One Class of Digraphs
    Darbinyan, Samvel Kh.
    Karapetyan, Iskandar A.
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [43] A Note on Long non-Hamiltonian Cycles in One Class of Digraphs
    Darbinyan, Samvel Kh.
    Karapetyan, Iskandar A.
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [44] A note on the augmented Zagreb index of cacti with fixed number of vertices and cycles
    Ali, Akbar
    Bhatti, Akhlaq A.
    KUWAIT JOURNAL OF SCIENCE, 2016, 43 (04) : 11 - 17
  • [45] A NOTE ON SMALL WEIGHT CODEWORDS OF PROJECTIVE GEOMETRIC CODES AND ON THE SMALLEST SETS OF EVEN TYPE
    Adriaensen, Sam
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 2072 - 2087
  • [46] A tight Erdos-Posa function for long cycles
    Mousset, F.
    Noever, A.
    Skoric, N.
    Weissenberger, F.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 125 : 21 - 32
  • [47] A SHARP LOWER BOUND FOR A RESONANCE-COUNTING FUNCTION IN EVEN DIMENSIONS
    Christiansen, T. J.
    ANNALES DE L INSTITUT FOURIER, 2017, 67 (02) : 579 - 604
  • [48] Improved radial basis function approach with odd-even corrections
    Niu, Z. M.
    Sun, B. H.
    Liang, H. Z.
    Niu, Y. F.
    Guo, J. Y.
    PHYSICAL REVIEW C, 2016, 94 (05)
  • [49] A note on the restricted partition function pA(n, k)
    Gajdzica, Krystian
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [50] A note on values of the Dedekind zeta-function at odd positive integers
    Murty, M. Ram
    Pathak, Siddhi S.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (08) : 1753 - 1764