共 50 条
A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES
被引:37
|作者:
Pikhurko, Oleg
[1
]
机构:
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金:
美国国家科学基金会;
关键词:
GRAPHS;
NUMBER;
D O I:
10.1090/s0002-9939-2012-11274-2
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The Turan function ex(n, F) is the maximum number of edges in an F-free graph on n vertices. The question of estimating this function for F = C-2k, the cycle of length 2k, is one of the central open questions in this area that goes back to the 1930s. We prove that ex(n, C-2k) <= (k - 1)n(1+1/k) + 16(k - 1)n, improving the previously best known general upper bound of Verstraete [Combin. Probab. Computing 9 (2000), 369-373] by a factor 8 + o(1) when n >> k.
引用
收藏
页码:3687 / 3692
页数:6
相关论文