A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES

被引:37
作者
Pikhurko, Oleg [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
GRAPHS; NUMBER;
D O I
10.1090/s0002-9939-2012-11274-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Turan function ex(n, F) is the maximum number of edges in an F-free graph on n vertices. The question of estimating this function for F = C-2k, the cycle of length 2k, is one of the central open questions in this area that goes back to the 1930s. We prove that ex(n, C-2k) <= (k - 1)n(1+1/k) + 16(k - 1)n, improving the previously best known general upper bound of Verstraete [Combin. Probab. Computing 9 (2000), 369-373] by a factor 8 + o(1) when n >> k.
引用
收藏
页码:3687 / 3692
页数:6
相关论文
共 23 条
[1]   MINIMAL REGULAR GRAPHS OF GIRTHS 8 AND 12 [J].
BENSON, CT .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05) :1091-&
[2]  
Bondy A., 2008, GRAPH THEORY
[3]  
Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
[4]   ON GRAPHS THAT DO NOT CONTAIN A THOMSEN GRAPH [J].
BROWN, WG .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03) :281-&
[5]   GRAPHS WITHOUT 4-CYCLES [J].
CLAPHAM, CRJ ;
FLOCKHART, A ;
SHEEHAN, J .
JOURNAL OF GRAPH THEORY, 1989, 13 (01) :29-47
[6]  
Erdo P., 1962, Publ. Math. Inst. Hungar. Acad. Sci., V7, P623
[7]   COMPACTNESS RESULTS IN EXTREMAL GRAPH-THEORY [J].
ERDOS, P ;
SIMONOVITS, M .
COMBINATORICA, 1982, 2 (03) :275-288
[8]  
Erdos P., 1938, MITT FORSCH I MATH M, V2, P74
[9]  
Erdos Paul, 1964, Extremal problems in graph theory, P29
[10]  
Erds P., 1966, studia sci. Math. Hungar., V1, P215