A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES

被引:37
|
作者
Pikhurko, Oleg [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
GRAPHS; NUMBER;
D O I
10.1090/s0002-9939-2012-11274-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Turan function ex(n, F) is the maximum number of edges in an F-free graph on n vertices. The question of estimating this function for F = C-2k, the cycle of length 2k, is one of the central open questions in this area that goes back to the 1930s. We prove that ex(n, C-2k) <= (k - 1)n(1+1/k) + 16(k - 1)n, improving the previously best known general upper bound of Verstraete [Combin. Probab. Computing 9 (2000), 369-373] by a factor 8 + o(1) when n >> k.
引用
收藏
页码:3687 / 3692
页数:6
相关论文
共 50 条
  • [1] GENERALIZED TURAN PROBLEMS FOR EVEN CYCLES
    Gerbner, D.
    Gyori, E.
    Methuku, A.
    Vizer, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 723 - 728
  • [2] Generalized Turan problems for even cycles
    Gerbner, Daniel
    Gyori, Ervin
    Methuku, Abhishek
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 169 - 213
  • [3] On the Turan number of some ordered even cycles
    Gyori, Ervin
    Korandi, Daniel
    Methuku, Abhishek
    Tomon, Istvan
    Tompkins, Casey
    Vizer, Mate
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 73 : 81 - 88
  • [4] Exact bipartite Turan numbers of large even cycles
    Li, Binlong
    Ning, Bo
    JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 642 - 656
  • [5] A Note on Even Cycles and Quasirandom Tournaments
    Kalyanasundaram, Subrahmanyam
    Shapira, Asaf
    JOURNAL OF GRAPH THEORY, 2013, 73 (03) : 260 - 266
  • [6] UNIFORM TURAN DENSITY OF CYCLES
    Bucic, Matija
    Cooper, Jacob W.
    Kral, Daniel
    Mohr, Samuel
    Correia, David Munha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (07) : 4765 - 4809
  • [7] A Brualdi-Hoffman-Turan problem on cycles
    Li, Xin
    Zhai, Mingqing
    Shu, Jinlong
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [8] Note on a Turan-type problem on distances
    Li, Xueliang
    Ma, Jing
    Shi, Yongtang
    Yue, Jun
    ARS COMBINATORIA, 2015, 119 : 211 - 219
  • [9] A localized approach for Turan number of long cycles
    Zhao, Kai
    Zhang, Xiao-Dong
    JOURNAL OF GRAPH THEORY, 2025, 108 (03) : 582 - 607
  • [10] ON POWERS OF HAMILTON CYCLES IN RAMSEY-TURAN THEORY
    Chen, Ming
    Han, Jie
    Tang, Yantao
    Yang, Donglei
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (03) : 2489 - 2508