Direct-drive inertial confinement fusion: A review

被引:606
|
作者
Craxton, R. S. [1 ]
Anderson, K. S. [1 ]
Boehly, T. R. [1 ]
Goncharov, V. N. [1 ]
Harding, D. R. [1 ]
Knauer, J. P. [1 ]
McCrory, R. L. [1 ,2 ,3 ]
McKenty, P. W. [1 ]
Meyerhofer, D. D. [1 ,2 ,3 ]
Myatt, J. F. [1 ]
Schmitt, A. J. [4 ]
Sethian, J. D. [4 ]
Short, R. W. [1 ]
Skupsky, S. [1 ]
Theobald, W. [1 ]
Kruer, W. L. [5 ]
Tanaka, K. [6 ]
Betti, R. [1 ,2 ,3 ]
Collins, T. J. B. [1 ]
Delettrez, J. A. [1 ]
Hu, S. X. [1 ]
Marozas, J. A. [1 ]
Maximov, A. V. [1 ]
Michel, D. T. [1 ]
Radha, P. B. [1 ]
Regan, S. P. [1 ]
Sangster, T. C. [1 ]
Seka, W. [1 ]
Solodov, A. A. [1 ]
Soures, J. M. [1 ]
Stoeckl, C. [1 ]
Zuegel, J. D. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] US Navy, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Osaka Univ, Grad Sch Engn, Dept Elect Elect & Informat, Osaka, Japan
关键词
RAYLEIGH-TAYLOR INSTABILITY; STIMULATED RAMAN-SCATTERING; EQUATION-OF-STATE; LASER-PRODUCED PLASMAS; POLAR-DIRECT-DRIVE; SPONTANEOUS MAGNETIC-FIELDS; INDUCED SPATIAL INCOHERENCE; CONSISTENT STABILITY ANALYSIS; 2-PLASMON DECAY INSTABILITY; NATIONAL-IGNITION-FACILITY;
D O I
10.1063/1.4934714
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser-plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 mu m-the third harmonic of the Nd: glass laser-and 0.248 mu m (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon-decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be nonlocal in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive-ignition experiments to be performed on the National Ignition Facility [Haynam et al., Appl. Opt. 46(16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 mu m and 1/4 mu m. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source. (C) 2015 Author(s).
引用
收藏
页数:153
相关论文
共 50 条
  • [1] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Glebov, V. Yu.
    Goncharov, V. N.
    Harding, D. R.
    Jacobs-Perkins, D. W.
    Knauer, J. P.
    Marshall, F. J.
    McKenty, P. W.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Short, R. W.
    Skupsky, S.
    Smalyuk, V. A.
    Soures, J. M.
    Stoeckl, C.
    Yaakobi, B.
    Shvarts, D.
    Frenje, J. A.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [2] Progress in direct-drive inertial confinement fusion
    McCrory, R. L.
    Meyerhofer, D. D.
    Betti, R.
    Boehly, T. R.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Froula, D. H.
    Glebov, V. Yu
    Goncharov, V. N.
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I. V.
    Knauer, J. P.
    Loucks, S. J.
    Marozas, J. A.
    Marshall, F. J.
    McKenty, P. W.
    Michel, T.
    Nilson, P. M.
    Radha, P. B.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Shmayda, W. T.
    Short, R. W.
    Shvarts, D.
    Skupsky, S.
    Soures, J. M.
    Stoeckl, C.
    Theobald, W.
    Yaakobi, B.
    Frenje, J. A.
    Casey, D. T.
    Li, C. K.
    Petrasso, R. D.
    Seguin, F. H.
    Padalino, S. J.
    Fletcher, K. A.
    Celliers, P. M.
    Collins, G. W.
    Robey, H. F.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [3] Direct-drive inertial confinement fusion implosions on omega
    Regan, SP
    Sangster, TC
    Meyerhofer, DD
    Anderson, K
    Betti, R
    Boehly, TR
    Collins, TJB
    Craxton, RS
    Delettrez, JA
    Epstein, R
    Gotchev, OV
    Glebov, VY
    Goncharov, VN
    Harding, DR
    Jaanimagi, PA
    Knauer, JP
    Loucks, SJ
    Lund, LD
    Marozas, JA
    Marshall, FJ
    McCrory, RL
    McKenty, PW
    Morse, SFB
    Radha, PB
    Seka, W
    Skupsky, S
    Sawada, H
    Smalyuk, VA
    Soures, JM
    Stoeckl, C
    Yaakobi, B
    Frenje, JA
    Li, CK
    Petrasso, RD
    Séguin, FH
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 298 (1-2) : 227 - 233
  • [4] The National Direct-Drive Inertial Confinement Fusion Program
    Regan, S. P.
    Goncharov, V. N.
    Sangster, T. C.
    Campbell, E. M.
    Betti, R.
    Bates, J. W.
    Bauer, K.
    Bernat, T.
    Bhandarkar, S.
    Boehly, T. R.
    Bonino, M. J.
    Bose, A.
    Cao, D.
    Carlson, L.
    Chapman, R.
    Chapman, T.
    Collins, G. W.
    Collins, T. J. B.
    Craxton, R. S.
    Delettrez, J. A.
    Edgell, D. H.
    Epstein, R.
    Farrell, M.
    Forrest, C. J.
    Follett, R. K.
    Frenje, J. A.
    Froula, D. H.
    Johnson, M. Gatu
    Gibson, C. R.
    Gonzalez, L.
    Goyon, C.
    Glebov, V. Yu
    Gopalaswamy, V.
    Greenwood, A.
    Harding, D. R.
    Hohenberger, M.
    Hu, S. X.
    Huang, H.
    Hund, J.
    Igumenshchev, I. V.
    Jacobs-Perkins, D. W.
    Janezic, R. T.
    Karasik, M.
    Kelly, J. H.
    Kessler, T. J.
    Knauer, J. P.
    Kosc, T. Z.
    Luo, R.
    Loucks, S. J.
    Marozas, J. A.
    NUCLEAR FUSION, 2019, 59 (03)
  • [5] Microphysics studies for direct-drive inertial confinement fusion
    Hu, S. X.
    Goncharov, V. N.
    Radha, P. B.
    Regan, S. P.
    Campbell, E. M.
    NUCLEAR FUSION, 2019, 59 (03)
  • [6] Direct-Drive Inertial Confinement Fusion Implosions on Omega
    S. P. Regan
    T. C. Sangster
    D. D. Meyerhofer
    K. Anderson
    R. Betti
    T. R. Boehly
    T. J. B. Collins
    R. S. Craxton
    J. A. Delettrez
    R. Epstein
    O. V. Gotchev
    V. Yu. Glebov
    V. N. Goncharov
    D. R. Harding
    P. A. Jaanimagi
    J. P. Knauer
    S. J. Loucks
    L. D. Lund
    J. A. Marozas
    F. J. Marshall
    R. L. Mccrory
    P. W. Mckenty
    S. F. B. Morse
    P. B. Radha
    W. Seka
    S. Skupsky
    H. Sawada
    V. A. Smalyuk
    J. M. Soures
    C. Stoeckl
    B. Yaakobi
    J. A. Frenje
    C. K. Li
    R. D. Petrasso
    F. H. SÉguin
    Astrophysics and Space Science, 2005, 298 : 227 - 233
  • [7] Laser plasma interaction in direct-drive inertial confinement fusion
    Myatt, J. F.
    Shaw, J.
    Goncharov, V. N.
    Zhang, J.
    Maximov, A. V.
    Short, R. W.
    Follett, R. K.
    Seka, W.
    Edgell, D. H.
    Froula, D. H.
    9TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2015), 2016, 717
  • [8] The influence of asymmetry on mix in direct-drive inertial confinement fusion experiments
    Christensen, CR
    Wilson, DC
    Barnes, CW
    Grim, GP
    Morgan, GL
    Wilke, MD
    Marshall, FJ
    Glebov, VY
    Stoeckl, C
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2771 - 2777
  • [9] Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion
    Kato, Hiroki
    Yamada, Hideaki
    Ohmagari, Shinya
    Chayahara, Akiyoshi
    Mokuno, Yoshiaki
    Fukuyama, Yuji
    Fujiwara, Neo
    Miyanishi, Kouhei
    Hironaka, Yoichiro
    Shigemori, Keisuke
    DIAMOND AND RELATED MATERIALS, 2018, 86 : 15 - 19
  • [10] Core conditions for alpha heating attained in direct-drive inertial confinement fusion
    Bose, A.
    Woo, K. M.
    Betti, R.
    Campbell, E. M.
    Mangino, D.
    Christopherson, A. R.
    McCrory, R. L.
    Nora, R.
    Regan, S. P.
    Goncharov, V. N.
    Sangster, T. C.
    Forrest, C. J.
    Frenje, J.
    Johnson, M. Gatu
    Glebov, V. Yu
    Knauer, J. P.
    Marshall, F. J.
    Stoeckl, C.
    Theobald, W.
    PHYSICAL REVIEW E, 2016, 94 (01):