Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process

被引:21
作者
Mehta, Karan K. [1 ,2 ]
Orcutt, Jason S. [1 ,2 ]
Shainline, Jeffrey M. [3 ]
Tehar-Zahav, Ofer [4 ,6 ]
Sternberg, Zvi [4 ]
Meade, Roy [5 ]
Popovic, Milos A. [3 ]
Ram, Rajeev J. [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Univ Colorado Boulder, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[4] Micron Semicond Israel, IL-82109 Kiryat Gat, Israel
[5] Micron Technol Inc, Proc R&D, Boise, ID 83716 USA
[6] Intel Israel 74 LTD, IL-31015 Haifa, Israel
关键词
PHOTODETECTOR; MODULATOR; CMOS;
D O I
10.1364/OL.39.001061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p + /p/i/n/n+ diode. The devices, operating both at lambda = 1280 and lambda = 1550 nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range. (C) 2014 Optical Society of America
引用
收藏
页码:1061 / 1064
页数:4
相关论文
共 14 条
[1]   Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects [J].
Assefa, Solomon ;
Xia, Fengnian ;
Vlasov, Yurii A. .
NATURE, 2010, 464 (7285) :80-U91
[2]   BUILDING MANY-CORE PROCESSOR-TO-DRAM NETWORKS WITH MONOLITHIC CMOS SILICON PHOTONICS [J].
Batten, Christopher ;
Joshi, Ajay ;
Orcutt, Jason ;
Khilo, Anatol ;
Moss, Benjamin ;
Holzwarth, Charles W. ;
Popovic, Milos A. ;
Li, Hanqing ;
Smith, Henry I. ;
Hoyt, Judy L. ;
Kaertner, Franz X. ;
Ram, Rajeev J. ;
Stojanovic, Vladimir ;
Asanovic, Krste .
IEEE MICRO, 2009, 29 (04) :8-21
[3]   Silicon photonic resonator-enhanced defect-mediated photodiode for sub-bandgap detection [J].
Doylend, J. K. ;
Jessop, P. E. ;
Knights, A. P. .
OPTICS EXPRESS, 2010, 18 (14) :14671-14678
[4]   Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response [J].
Geis, M. W. ;
Spector, S. J. ;
Grein, M. E. ;
Yoon, J. U. ;
Lennon, D. M. ;
Lyszczarz, T. M. .
OPTICS EXPRESS, 2009, 17 (07) :5193-5204
[5]   A Monolithically-Integrated Optical Receiver in Standard 45-nm SOI [J].
Georgas, Michael ;
Orcutt, Jason ;
Ram, Rajeev J. ;
Stojanovic, Vladimir .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (07) :1693-1702
[6]   Surface-roughness-induced contradirectional coupling in ring and disk resonators [J].
Little, BE ;
Laine, JP ;
Chu, ST .
OPTICS LETTERS, 1997, 22 (01) :4-6
[7]   High-Q CMOS-integrated photonic crystal microcavity devices [J].
Mehta, Karan K. ;
Orcutt, Jason S. ;
Tehar-Zahav, Ofer ;
Sternberg, Zvi ;
Bafrali, Reha ;
Meade, Roy ;
Ram, Rajeev J. .
SCIENTIFIC REPORTS, 2014, 4
[8]   Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process [J].
Orcutt, Jason S. ;
Tang, Sanh D. ;
Kramer, Steve ;
Mehta, Karan ;
Li, Hanqing ;
Stojanovic, Vladimir ;
Ram, Rajeev J. .
OPTICS EXPRESS, 2012, 20 (07) :7243-7254
[9]  
POPOVIC M, 2008, THESIS MIT
[10]   Waveguide-integrated telecom-wavelength photodiode in deposited silicon [J].
Preston, Kyle ;
Lee, Yoon Ho Daniel ;
Zhang, Mian ;
Lipson, Michal .
OPTICS LETTERS, 2011, 36 (01) :52-54