Spatiotemporal coupled-mode theory of guided-mode resonant gratings

被引:34
作者
Bykov, Dmitry A. [1 ,2 ]
Doskolovich, Leonid L. [1 ,2 ]
机构
[1] Russian Acad Sci, Image Proc Syst Inst, Samara 443001, Russia
[2] SSAU, Samara 443086, Russia
来源
OPTICS EXPRESS | 2015年 / 23卷 / 15期
基金
俄罗斯科学基金会;
关键词
FORMULATION;
D O I
10.1364/OE.23.019234
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we develop spatiotemporal coupled-mode theory to describe optical properties of guided-mode resonant gratings. We derive partial differential equations that describe both spatial and temporal evolution of the field inside the grating. These equations describe the coupling of two counter-propagating grating modes, revealing the structure's "dark" and "bright" resonances at normal incidence of light. Moreover, the proposed theory allows us to obtain a simple approximation of the transmission and reflection coefficients taking into account both light's frequency and angle of incidence. This approximation can be considered as the generalization of the Fano line-shape. The approximation is in good agreement with the rigorous computations based on the Fourier modal method. The results of the paper will be useful for design and analysis of guided-mode resonant filters and other photonic devices. (C) 2015 Optical Society of America
引用
收藏
页码:19234 / 19241
页数:8
相关论文
共 22 条
  • [1] From coupled plane waves to the coupled-mode theory of guided-mode resonant gratings
    Bykov, Dmitry A.
    Bezus, Evgeni A.
    Doskolovich, Leonid L.
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2023, 56
  • [2] Coupled-mode theory for resonant gratings with a varying period
    Bykov, D. A.
    Bezus, E. A.
    Doskolovich, L. L.
    COMPUTER OPTICS, 2023, 47 (03) : 341 - +
  • [3] Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings
    Bykov, Dmitry A.
    Bezus, Evgeni A.
    Doskolovich, Leonid L.
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [4] Optical properties of guided-mode resonant gratings with linearly varying period
    Bykov, Dmitry A.
    Bezus, Evgeni A.
    Morozov, Andrey A.
    V. Podlipnov, Vladimir
    Doskolovich, Leonid L.
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [5] Coupled-Mode Theory for Semiconductor Nanowires
    Buschlinger, Robert
    Lorke, Michael
    Peschel, Ulf
    PHYSICAL REVIEW APPLIED, 2017, 7 (03):
  • [6] Spatiotemporal coupled-mode theory for Fabry-Pérot resonators and its application to linear variable filters
    Bykov, Dmitry A.
    Bezus, Evgeni A.
    Doskolovich, Leonid L.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [7] First-order optical spatial differentiator based on a guided-mode resonant grating
    Bykov, Dmitry A.
    Doskolovich, Leonid L.
    Morozov, Andrey A.
    Podlipnov, Vladimir V.
    Bezus, Evgeni A.
    Verma, Payal
    Soifer, Victor A.
    OPTICS EXPRESS, 2018, 26 (08): : 10997 - 11006
  • [8] Two-dimensional guided-mode resonance gratings with an etch-stop layer and high tolerance to fabrication errors
    Zhou, Jianyu
    Dong, Siyu
    Wei, Zeyong
    Zhang, Jinlong
    Deng, Xiao
    Wang, Zhanshan
    Cheng, Xinbin
    OPTICS EXPRESS, 2022, 30 (14) : 25907 - 25917
  • [9] Complex coupled mode theory electromagnetic mode solver
    DeWolf, Timothy
    Gordon, Reuven
    OPTICS EXPRESS, 2017, 25 (23): : 28337 - 28351
  • [10] Ultrasensitive guided-mode resonance biosensors superimposed with vertical-sidewall roughness
    Jao, Chih-Sheng
    Lin, Hoang Yan
    APPLIED OPTICS, 2011, 50 (26) : 5139 - 5148