BOUNDS FOR DEGREE DISTANCE OF A GRAPH

被引:0
作者
Kanwal, Salma [1 ]
Tomescu, Ioan [2 ]
机构
[1] Lahore Coll Women Univ, Lahore, Pakistan
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
来源
MATHEMATICAL REPORTS | 2015年 / 17卷 / 03期
关键词
degree distance; first Zagreb index; eccentricity; diameter; regular graph; perfect matching; CONNECTED GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph with vertex set V(G), then the degree distance of G, D'(G), is defined as D'(G) = Sigma(x is an element of V(G)) d(x) Sigma(y is an element of V(G)) d(x,y), where d(x) and d(x, y) are the degree of x and the distance between x and y, respectively. In this paper, lower and upper bounds on D'(G) are obtained in terms of various graphical parameters like first Zagreb index, order, size, diameter, radius, minimum degree, and graphs for which these bounds are attained are characterized.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 2001, MOL TOPOLOGY
[2]  
[Anonymous], 2006, J MATH STUDY
[3]  
[Anonymous], 2008, Handbook of Molecular Descriptors
[4]  
Bollobas B., 1998, GRAD TEXT M, P215
[5]   The minimum degree distance of graphs of given order and size [J].
Bucicovschi, Orest ;
Cioaba, Sebastian M. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) :3518-3521
[6]  
[陈爱莲 Chen Ailian], 2004, [福州大学学报. 自然科学版, Journal of Fuzhou University], V32, P664
[7]   On the degree distance of a graph [J].
Dankelmann, P. ;
Gutman, I. ;
Mukwembi, S. ;
Swart, H. C. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) :2773-2777
[8]  
Devillers J, 1999, Topological Indices and Related Descriptors in QSAR and QSPAR
[9]   DEGREE DISTANCE OF A GRAPH - A DEGREE ANALOG OF THE WIENER INDEX [J].
DOBRYNIN, AA ;
KOCHETOVA, AA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1082-1086
[10]   SELECTED PROPERTIES OF THE SCHULTZ MOLECULAR TOPOLOGICAL INDEX [J].
GUTMAN, I .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1087-1089