Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties

被引:49
作者
Jockers, Hans [1 ]
Kumar, Vijay [2 ]
Lapan, Joshua M. [3 ]
Morrison, David R. [4 ,5 ]
Romoe, Mauricio [5 ]
机构
[1] Univ Bonn, Bethe Ctr Theoret Phys, Inst Phys, D-53115 Bonn, Germany
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] McGill Univ, Dept Phys, Montreal, PQ, Canada
[4] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Supersymmetry and Duality; Superstring Vacua; MIRROR SYMMETRY; COHOMOLOGY; DUALITY; ALGEBRA; IDEALS;
D O I
10.1007/JHEP11(2012)166
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The two-dimensional supersymmetric gauged linear sigma model (GLSM) with abelian gauge groups and matter fields has provided many insights into string theory on Calabi-Yau manifolds of a certain type: complete intersections in toric varieties. In this paper, we consider two GLSM constructions with nonabelian gauge groups and charged matter whose infrared CFTs correspond to string propagation on determinantal Calabi-Yau varieties, furnishing another broad class of Calabi-Yau geometries in addition to complete intersections. We show that these two models - which we refer to as the PAX and the PAXY model - are dual descriptions of the same low-energy physics. Using GLSM techniques, we determine the quantum Kahler moduli space of these varieties and find no disagreement with existing results in the literature.
引用
收藏
页数:47
相关论文
共 48 条
[1]  
[Anonymous], hep:th/0002222
[2]  
[Anonymous], 1984, ERGEB MATH GRENZGEB
[3]  
[Anonymous], 1973, TOPOLOGY, DOI [DOI 10.1016/0040-9383(73)90022-0, 10.1016/0040-9383(73)90022-0]
[4]  
Batyrev V.V., alg-geom/9412017
[5]   Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians [J].
Batyrev, VV ;
Ciocan-Fontanine, I ;
Kim, B ;
van Straten, D .
NUCLEAR PHYSICS B, 1998, 514 (03) :640-666
[6]   Mirror symmetry and toric degenerations of partial flag manifolds [J].
Batyrev, VV ;
Ciocan-Fontanine, I ;
Kim, B ;
Van Straten, D .
ACTA MATHEMATICA, 2000, 184 (01) :1-39
[7]  
Batyrev VV., 1994, J. Alg. Geom., V3, P493
[8]  
BERENSTEIN D, HEPTH0207027
[9]  
Bertin M.A., MATH0701511
[10]  
Boehm J., ARXIV07084402