Coassembly is a homotopy limit map

被引:1
作者
Malkiewich, Cary [1 ]
Merling, Mona [2 ]
机构
[1] SUNY Binghamton, Dept Math, Binghamton, NY 13902 USA
[2] Univ Penn, Dept Math, Phialdelphia, PA USA
关键词
coassembly; A-theory; equivariant A-theory; homotopy limit; bivariant A-theory; ALGEBRAIC K-THEORY; POINT-OF-VIEW; PARAMETRIZED SPECTRA; ASSEMBLY MAPS; EMBEDDINGS; CATEGORY; THEOREM;
D O I
10.2140/akt.2020.5.373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a claim by Williams that the coassembly map is a homotopy limit map. As an application, we show that the homotopy limit map for the coarse version of equivariant A-theory agrees with the coassembly map for bivariant A-theory that appears in the statement of the topological Riemann-Roch theorem.
引用
收藏
页码:373 / 394
页数:22
相关论文
共 32 条
  • [1] Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    [J]. GEOMETRY & TOPOLOGY, 2018, 22 (07) : 3761 - 3825
  • [2] [Anonymous], THESIS
  • [3] Barwick C., 2020, TUNISIAN J MATH, V2, P97, DOI DOI 10.2140/TUNIS.2020.2.97
  • [4] Bousfield A K, 1972, Lecture Notes in Math., V304
  • [5] UMKEHR MAPS
    Cohen, Ralph L.
    Klein, John R.
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2009, 11 (01) : 17 - 33
  • [6] Spaces over a category and assembly maps in isomorphism conjectures in K- and L-theory
    Davis, JF
    Luck, W
    [J]. K-THEORY, 1998, 15 (03): : 201 - 252
  • [7] Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups
    Devinatz, ES
    Hopkins, MJ
    [J]. TOPOLOGY, 2004, 43 (01) : 1 - 47
  • [8] A parametrized index theorem for the algebraic K-theory Euler class
    Dwyer, W
    Weiss, M
    Williams, B
    [J]. ACTA MATHEMATICA, 2003, 190 (01) : 1 - 104
  • [9] Farrell F. T., 1993, J AM MATH SOC, V6, P249
  • [10] Goerss P. G., 2009, Simplicial homotopy theory