H∞ synchronization of chaotic systems via dynamic feedback approach

被引:100
作者
Lee, S. M. [2 ]
Ji, D. H. [3 ]
Park, Ju H. [1 ]
Won, S. C. [3 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Robust Control & Nonlinear Dynam Lab, Kyongsan 712749, South Korea
[2] KT Co Ltd, BcN Business Unit, Platform Verificat Div, Taejon, South Korea
[3] Pohang Univ Sci & Technol, Dept Elect & Elect Engn, Pohang 790784, South Korea
关键词
chaotic systems; H-infinity synchronization; dynamic control; LMI;
D O I
10.1016/j.physleta.2008.05.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter considers H-infinity synchronization of a general class of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both master and slave systems but also reduce the effect of external disturbance to an H-infinity norm constraint. A dynamic feedback control scheme is proposed for H-infinity synchronization in chaotic systems for the first time. Then, a criterion for existence of the controller is given in terms of LMIs. Finally, a numerical simulation is presented to show the effectiveness of the proposed chaos synchronization scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4905 / 4912
页数:8
相关论文
共 21 条
[1]  
ANTON S, 1992, CONTROL PROBLEM
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]   CHAOS IN AN EFFECTIVE 4-NEURON NEURAL NETWORK [J].
DAS, PK ;
SCHIEVE, WC ;
ZENG, ZJ .
PHYSICS LETTERS A, 1991, 161 (01) :60-66
[5]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[6]   H∞ synchronization of chaotic systems using output feedback control design [J].
Hou, Yi-You ;
Liao, Teh-Lu ;
Yan, Jun-Juh .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) :81-89
[7]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[8]   Synchronization of a class of chaotic dynamic systems with controller gain variations [J].
Park, JH .
CHAOS SOLITONS & FRACTALS, 2006, 27 (05) :1279-1284
[9]  
Park JH, 2005, INT J NONLIN SCI NUM, V6, P201
[10]   Chaos synchronization of a chaotic system via nonlinear control [J].
Park, JH .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :579-584