Fractal structure of Yang-mills fields

被引:6
作者
Deppman, Airton [1 ]
Megias, Eugenio [2 ,3 ]
Menezes, Debora P. [4 ]
机构
[1] Inst Fis, Rua Matao 1371 Butanta, BR-05580090 Sao Paulo, SP, Brazil
[2] Univ Granada, Dept Fis Atom Mol & Nucl, Ave Fuente Nueva S-N, Granada 18071, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, Ave Fuente Nueva S-N, Granada 18071, Spain
[4] Univ Fed Santa Catarina, CFM, Dept Fis, SC CP 476, BR-88040900 Florianopolis, SC, Brazil
基金
巴西圣保罗研究基金会;
关键词
Yang-Mills theory; non-extensive statistics; thermofractals; quark-gluon plasma; hadron physics; NON-EXTENSIVE THERMODYNAMICS; NONEXTENSIVITY;
D O I
10.1088/1402-4896/abb0a9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The origin of non-extensive thermodynamics in physical systems has been under intense debate for the last decades. Recent results indicate a connection between non-extensive statistics and thermofractals. After reviewing this connection, we analyze how scaling properties of Yang-Mills theory allow the appearance of self-similar structures in gauge fields. The presence of such structures, which actually behave as fractals, allows for recurrent non-perturbative calculations of vertices. It is argued that when a statistical approach is used, the non-extensive statistics is obtained, and the Tsallis entropic index,q, is deduced in terms of the field theory parameters. The results are applied to QCD in the one-loop approximation, resulting in a good agreement with the value ofqobtained experimentally.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Bag-type model with fractal structure [J].
Andrade, Evandro, II ;
Deppman, Airton ;
Megias, Eugenio ;
Menezes, Debora P. ;
da Silva, Tiago Nunes .
PHYSICAL REVIEW D, 2020, 101 (05)
[2]   Tsallis-thermometer: a QGP indicator for large and small collisional systems [J].
Biro, Gabor ;
Barnafoldi, Gergely Gabor ;
Biro, Tamas Sandor .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2020, 47 (10)
[3]   Non-extensive quantum statistics with particle hole symmetry [J].
Biro, T. S. ;
Shen, K. M. ;
Zhang, B. W. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 428 :410-415
[4]   Ito-Langevin equations within generalized thermostatistics [J].
Borland, L .
PHYSICS LETTERS A, 1998, 245 (1-2) :67-72
[5]   BROKEN SCALE INVARIANCE IN SCALAR FIELD THEORY [J].
CALLAN, CG .
PHYSICAL REVIEW D, 1970, 2 (08) :1541-&
[6]   Quark matter revisited with non-extensive MIT bag model [J].
Cardoso, Pedro H. G. ;
da Silva, Tiago Nunes ;
Deppman, Airton ;
Menezes, Debora P. .
EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (10)
[7]   The Tsallis distribution in proton-proton collisions at √s=0.9 TeV at the LHC [J].
Cleymans, J. ;
Worku, D. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2012, 39 (02)
[8]   The four-loop QCD β-function and anomalous dimensions [J].
Czakon, M .
NUCLEAR PHYSICS B, 2005, 710 (1-2) :485-498
[9]   S-MATRIX FORMULATION OF STATISTICAL MECHANICS [J].
DASHEN, R ;
MA, SK ;
BERNSTEIN, HJ .
PHYSICAL REVIEW, 1969, 187 (01) :345-+
[10]   Thermodynamics with fractal structure, Tsallis statistics, and hadrons [J].
Deppman, A. .
PHYSICAL REVIEW D, 2016, 93 (05)