Maximal irredundant families of minimal size in the alternating group

被引:5
作者
Garonzi, Martino [1 ]
Lucchini, Andrea [2 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Univ Darcy Ribeiro, BR-70910900 Brasilia, DF, Brazil
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35131 Padua, Italy
关键词
Alternating groups; Maximal subgroups; BASE SIZES;
D O I
10.1007/s00013-019-01331-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. A family M of maximal subgroups of G is called irredundant if its intersection is not equal to the intersection of any proper subfamily. M is called maximal irredundant if M is irredundant and it is not properly contained in any other irredundant family. We denote by (G) when G is the alternating group on n letters.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 10 条
[1]  
[Anonymous], 2017, GAP GROUPS ALG PROGR
[2]   On base sizes for algebraic groups [J].
Burness, Timothy C. ;
Guralnick, Robert M. ;
Saxl, Jan .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (08) :2269-2341
[3]   On base sizes for symmetric groups [J].
Burness, Timothy C. ;
Guralnick, Robert M. ;
Saxl, Jan .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :386-391
[4]   Base sizes for simple groups and a conjecture of Cameron [J].
Burness, Timothy C. ;
Liebeck, Martin W. ;
Shalev, Aner .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2009, 98 :116-162
[5]  
Cameron P.J., 1999, LONDON MATH SOC STUD
[6]  
Fernando R, ARXIV150200360
[7]  
Kleidman P., 1990, SUBGROUP STRUCTURE F
[8]  
LIEBECK MW, 1985, J LOND MATH SOC, V31, P237
[9]   Maximal independent generating sets of the symmetric group [J].
Whiston, J .
JOURNAL OF ALGEBRA, 2000, 232 (01) :255-268
[10]  
Wielandt H, 1956, MATH Z, V63, P478