The introduction of population migration to SEIAR for COVID-19 epidemic modeling with an efficient intervention strategy

被引:61
作者
Chen, Min [1 ]
Li, Miao [1 ]
Hao, Yixue [1 ]
Liu, Zhongchun [2 ]
Hu, Long [1 ]
Wang, Lin [3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Dept Psychiat, Renmin Hosp, Wuhan, Peoples R China
[3] Res Ctr Tissue Engn & Regenerat Med, Xian, Peoples R China
[4] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Clin Lab, Wuhan 430022, Peoples R China
基金
国家重点研发计划;
关键词
COVID-19; SEIAR; Basic reproduction number; Migration-in rate; Contact rate;
D O I
10.1016/j.inffus.2020.08.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a mathematical model of an infectious disease according to the characteristics of the COVID-19 pandemic. The proposed enhanced model, which will be referred to as the SEIR (Susceptible-Exposed-Infectious-Recovered) model with population migration, is inspired by the role that asymptomatic infected individuals, as well as population movements can play a crucial role in spreading the virus. In the model, the infected and the basic reproduction numbers are compared under the influence of intervention policies. The experimental simulation results show the impact of social distancing and migration-in rates on reducing the total number of infections and the basic reproductions. And then, the importance of controlling the number of migration-in people and the policy of restricting residents' movements in preventing the spread of COVID-19 pandemic are verified.
引用
收藏
页码:252 / 258
页数:7
相关论文
共 19 条
[1]  
Abta A, 2012, ELECTRON J DIFFER EQ
[2]   Modeling the Effects of Prevention and Early Diagnosis on HIV/AIDS Infection Diffusion [J].
Di Giamberardino, Paolo ;
Compagnucci, Luca ;
De Giorgi, Chiara ;
Iacoviello, Daniela .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (10) :2119-2130
[3]   Clinical Characteristics of Coronavirus Disease 2019 in China [J].
Guan, W. ;
Ni, Z. ;
Hu, Yu ;
Liang, W. ;
Ou, C. ;
He, J. ;
Liu, L. ;
Shan, H. ;
Lei, C. ;
Hui, D. S. C. ;
Du, B. ;
Li, L. ;
Zeng, G. ;
Yuen, K. -Y. ;
Chen, R. ;
Tang, C. ;
Wang, T. ;
Chen, P. ;
Xiang, J. ;
Li, S. ;
Wang, Jin-lin ;
Liang, Z. ;
Peng, Y. ;
Wei, L. ;
Liu, Y. ;
Hu, Ya-hua ;
Peng, P. ;
Wang, Jian-ming ;
Liu, J. ;
Chen, Z. ;
Li, G. ;
Zheng, Z. ;
Qiu, S. ;
Luo, J. ;
Ye, C. ;
Zhu, S. ;
Zhong, N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1708-1720
[4]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653
[5]   A Simulation on Potential Secondary Spread of Novel Coronavirus in an Exported Country Using a Stochastic Epidemic SEIR Model [J].
Iwata, Kentaro ;
Miyakoshi, Chisato .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (04)
[6]  
Kermack W.O., 2020, PROC R SOC LOND SER, V115, P700, DOI DOI 10.1137/S0036144500371907
[7]   The effect of human mobility and control measures on the COVID-19 epidemic in China [J].
Kraemer, Moritz U. G. ;
Yang, Chia-Hung ;
Gutierrez, Bernardo ;
Wu, Chieh-Hsi ;
Klein, Brennan ;
Pigott, David M. ;
du Plessis, Louis ;
Faria, Nuno R. ;
Li, Ruoran ;
Hanage, William P. ;
Brownstein, John S. ;
Layan, Maylis ;
Vespignani, Alessandro ;
Tian, Huaiyu ;
Dye, Christopher ;
Pybus, Oliver G. ;
Scarpino, Samuel V. .
SCIENCE, 2020, 368 (6490) :493-+
[8]   Statistical inference in a stochastic epidemic SEIR model with control intervention:: Ebola as a case study [J].
Lekone, Phenyo E. ;
Finkenstadt, Barbel F. .
BIOMETRICS, 2006, 62 (04) :1170-1177
[9]   Global dynamics of a class of SEIRS epidemic models in a periodic environment [J].
Nakata, Yukihiko ;
Kuniya, Toshikazu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 363 (01) :230-237
[10]  
Syafruddin S., 2012, International Journal of Modern Physics: Conference Series, V9, P380, DOI 10.1142/S2010194512005454