Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system

被引:68
作者
Zhong, W. Z. [1 ]
Rusinek, A. [2 ]
Jankowiak, T. [3 ]
Abed, F. [4 ]
Bernier, R. [2 ]
Sutter, G. [5 ]
机构
[1] China Acad Engn Phys, Inst Syst Engn, Mianyang 621999, Peoples R China
[2] Natl Engn Sch Metz ENIM, Lab Mech Biomech Polymers & Struct, F-57078 Metz, France
[3] Poznan Univ Tech, Inst Struct Engn, PL-60965 Poznan, Poland
[4] Amer Univ Sharjah, Dept Civil Engn, Sharjah, U Arab Emirates
[5] Univ Lorraine, LEM3, UMR 7239, F-57045 Metz 1, France
基金
中国国家自然科学基金;
关键词
Split Hopkinson Pressure Bar; Dynamic friction; Specimen configuration; Numerical simulation; HIGH-STRAIN-RATE; DYNAMIC TENSILE-STRENGTH; MATERIAL FLOW-STRESS; NUMERICAL-ANALYSIS; RADIAL INERTIA; END FRICTION; SHPB; TESTS; STEEL; DEFORMATION;
D O I
10.1016/j.triboint.2015.04.002
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Influences of interface friction and specimen configuration on the material dynamic response using split Hopkinson pressure bar (SHPB) experiment are evaluated using nonlinear finite element (FE) analysis. The effect of various friction conditions between specimen and the transmitted/incident bars in SHPB system is investigated for different specimen geometries. Cylindrical and cuboid specimens with one- and four-layered configurations are adopted and the stress states along the specimen are analyzed. Results indicate that the transmitted signal decreases and the reflected signal increases with friction coefficient increasing. Interface friction brings great variation in stress triaxiality and Lode parameters in the SHPB specimen. Experimental tests are also conducted in this study to verify the conclusions made through FE simulations. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 58 条
[11]   Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions [J].
Chen, Y. ;
Clausen, A. H. ;
Hopperstad, O. S. ;
Langseth, M. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2011, 38 (10) :824-836
[12]  
Chowdhury A.M., 2012, TRIBOLOGY IND, V34, P18
[13]  
Church P., 2011, Engineering Transactions, V59, P251
[14]   THE DYNAMIC COMPRESSION TESTING OF SOLIDS BY THE METHOD OF THE SPLIT HOPKINSON PRESSURE BAR [J].
DAVIES, EDH ;
HUNTER, SC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1963, 11 (03) :155-179
[15]   An experimental and numerical analysis of the heat transfer problem in SHPB at elevated temperatures [J].
Davoodi, B ;
Gavrus, A ;
Ragneau, E .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (10) :2101-2108
[16]   Friction-induced structural modifications of Mg and Ti surfaces [J].
Eleoed, A. ;
Berthier, Y. ;
Lach, E. ;
Toerkoely, T. ;
Juhasz, G. .
TRIBOLOGY INTERNATIONAL, 2009, 42 (05) :690-698
[17]  
Follansbee P.S., 1985, METALS HDB, P198
[18]   The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J].
Forrestal, M. J. ;
Wright, T. W. ;
Chen, W. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2007, 34 (03) :405-411
[19]   Analysis of friction influence on material deformation under biaxial compression state [J].
Fras, T. ;
Rusinek, A. ;
Pecherski, R. B. ;
Bernier, R. ;
Jankowiak, T. .
TRIBOLOGY INTERNATIONAL, 2014, 80 :14-24
[20]   Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J].
Frew, DJ ;
Forrestal, MJ ;
Chen, W .
EXPERIMENTAL MECHANICS, 2002, 42 (01) :93-106