Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system

被引:68
作者
Zhong, W. Z. [1 ]
Rusinek, A. [2 ]
Jankowiak, T. [3 ]
Abed, F. [4 ]
Bernier, R. [2 ]
Sutter, G. [5 ]
机构
[1] China Acad Engn Phys, Inst Syst Engn, Mianyang 621999, Peoples R China
[2] Natl Engn Sch Metz ENIM, Lab Mech Biomech Polymers & Struct, F-57078 Metz, France
[3] Poznan Univ Tech, Inst Struct Engn, PL-60965 Poznan, Poland
[4] Amer Univ Sharjah, Dept Civil Engn, Sharjah, U Arab Emirates
[5] Univ Lorraine, LEM3, UMR 7239, F-57045 Metz 1, France
基金
中国国家自然科学基金;
关键词
Split Hopkinson Pressure Bar; Dynamic friction; Specimen configuration; Numerical simulation; HIGH-STRAIN-RATE; DYNAMIC TENSILE-STRENGTH; MATERIAL FLOW-STRESS; NUMERICAL-ANALYSIS; RADIAL INERTIA; END FRICTION; SHPB; TESTS; STEEL; DEFORMATION;
D O I
10.1016/j.triboint.2015.04.002
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Influences of interface friction and specimen configuration on the material dynamic response using split Hopkinson pressure bar (SHPB) experiment are evaluated using nonlinear finite element (FE) analysis. The effect of various friction conditions between specimen and the transmitted/incident bars in SHPB system is investigated for different specimen geometries. Cylindrical and cuboid specimens with one- and four-layered configurations are adopted and the stress states along the specimen are analyzed. Results indicate that the transmitted signal decreases and the reflected signal increases with friction coefficient increasing. Interface friction brings great variation in stress triaxiality and Lode parameters in the SHPB specimen. Experimental tests are also conducted in this study to verify the conclusions made through FE simulations. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 58 条
[1]   Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen [J].
Alves, M. ;
Karagiozova, D. ;
Micheli, G. B. ;
Calle, M. A. G. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2012, 49 :130-141
[2]   High temperature high strain rate testing with a compressive SHPB [J].
Apostol, M ;
Vuoristo, T ;
Kuokkala, VT .
JOURNAL DE PHYSIQUE IV, 2003, 110 :459-464
[3]   A constitutive relationship for metals compensated for adiabatic and friction effects [J].
Ashton, M ;
Parry, DJ .
JOURNAL DE PHYSIQUE IV, 2000, 10 (P9) :263-268
[4]   Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J].
Bailly, P. ;
Delvare, F. ;
Vial, J. ;
Hanus, J. L. ;
Biessy, M. ;
Picart, D. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2011, 38 (2-3) :73-84
[5]   Dynamic tests on a cohesive and frictional material. Influence of high pressure and high strain rate on compaction and shear [J].
Bailly, P. ;
Delvare, F. ;
Biessy, M. ;
Picart, D. .
DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, :213-+
[6]   The significance and use of the friction coefficient [J].
Blau, PJ .
TRIBOLOGY INTERNATIONAL, 2001, 34 (09) :585-591
[7]  
Bowden F, 2001, FRICTION LUBRICATION
[8]   Experimental definition of dynamic friction [J].
Bragov, A. ;
Konstantinov, A. ;
Lomunov, A. ;
Shmotin, Yu. ;
Kruszka, L. .
DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, :619-+
[9]   THE INFLUENCE OF INTERFACIAL FRICTION ON THE DEFORMATION OF HIGH-DENSITY POLYETHYLENE IN A SPLIT HOPKINSON PRESSURE BAR [J].
BRISCOE, BJ ;
NOSKER, RW .
WEAR, 1984, 95 (03) :241-262
[10]   Finite-element analysis of SHPB tests on double-lap adhesive joints [J].
Challita, Georges ;
Othman, Ramzi .
INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2010, 30 (04) :236-244