Analysis and computation of the transmission eigenvalues with a conductive boundary condition

被引:8
作者
Harris, I [1 ]
Kleefeld, A. [2 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, Julich, Germany
关键词
Transmission eigenvalues; conductive boundary condition; inverse spectral problem; boundary integral equations; EQUATION;
D O I
10.1080/00036811.2020.1789598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber-Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown.
引用
收藏
页码:1880 / 1895
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 2010, Partial Differential Equations
[2]  
[Anonymous], 2013, Inverse Problems
[3]   An integral method for solving nonlinear eigenvalue problems [J].
Beyn, Wolf-Juergen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) :3839-3863
[4]   The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary [J].
Bondarenko, O. ;
Harris, I. ;
Kleefeld, A. .
APPLICABLE ANALYSIS, 2017, 96 (01) :2-22
[5]   The factorization method for inverse obstacle scattering with conductive boundary condition [J].
Bondarenko, Oleksandr ;
Liu, Xiaodong .
INVERSE PROBLEMS, 2013, 29 (09)
[6]  
Bonnet-Ben Dhia A-S, 2011, C R ACAD SCI PARIS 1, V349, p[11, 647]
[7]  
Cakoni F., 2016, CBMS NSF REGIONAL C, V88, P193
[8]   A boundary integral equation method for the transmission eigenvalue problem [J].
Cakoni, Fioralba ;
Kress, Rainer .
APPLICABLE ANALYSIS, 2017, 96 (01) :23-38
[9]   THE INTERIOR TRANSMISSION PROBLEM FOR REGIONS WITH CAVITIES [J].
Cakoni, Fioralba ;
Colton, David ;
Haddar, Houssem .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :145-162
[10]   On the determination of Dirichlet or transmission eigenvalues from far field data [J].
Cakoni, Fioralba ;
Colton, David ;
Haddar, Houssem .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (7-8) :379-383