Loss of DNA polymerase β stacking interactions with templating purines, but not pyrimidines, alters catalytic efficiency and fidelity

被引:73
作者
Beard, WA
Shock, DD
Yang, XP
DeLauder, SF
Wilson, SH
机构
[1] NIEHS, Struct Biol Lab, NIH, Res Triangle Pk, NC 27709 USA
[2] N Carolina Cent Univ, Dept Chem, Durham, NC 27707 USA
关键词
D O I
10.1074/jbc.M107286200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structures of DNA polymerases bound with DNA reveal that the 5'-trajectory of the template strand is dramatically altered as it exits the polymerase active site. This distortion provides the polymerase access to the nascent base pair to interrogate proper Watson-Crick geometry. Upon binding a correct deoxynucleoside triphosphate, a-helix N of DNA polymerase 13 is observed to form one face of the binding pocket for the new base pair. Asp-276 and Lys-280 stack with the bases of the incoming nucleotide and template, respectively. To determine the role of Lys-280, site-directed mutants were constructed at this position, and the proteins were expressed and purified, and their catalytic efficiency and fidelity were assessed. The catalytic efficiency for single-nucleotide gap filling with the glycine mutant (K280G) was strongly diminished relative to wild type for templating purines (>15-fold) due to a decreased binding affinity for the incoming nucleotide. In contrast, catalytic efficiency was hardly affected by glycine substitution for templating pyrimidines (<4-fold). The fidelity of the glycine mutant was identical to the wild type enzyme for misinsertion opposite a template thymidine, whereas the fidelity of misinsertion opposite a template guanine was modestly altered. The nature of the Lys-280 side-chain substitution for thymidine triphosphate insertion (templating adenine) indicates that Lys-280 "stabilizes" templating purines through van der Waals interactions.
引用
收藏
页码:8235 / 8242
页数:8
相关论文
共 44 条
[11]   2.3-ANGSTROM CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF DNA POLYMERASE-BETA [J].
DAVIES, JF ;
ALMASSY, RJ ;
HOSTOMSKA, Z ;
FERRE, RA ;
HOSTOMSKY, Z .
CELL, 1994, 76 (06) :1123-1133
[12]   Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution [J].
Doublié, S ;
Tabor, S ;
Long, AM ;
Richardson, CC ;
Ellenberger, T .
NATURE, 1998, 391 (6664) :251-258
[13]   An open and closed case for all polymerases [J].
Doublié, S ;
Sawaya, MR ;
Ellenberger, T .
STRUCTURE, 1999, 7 (02) :R31-R35
[14]   Structure of the replicating complex of a pol α family DNA polymerase [J].
Franklin, MC ;
Wang, JM ;
Steitz, TA .
CELL, 2001, 105 (05) :657-667
[15]   DNA-POLYMERASE-BETA BELONGS TO AN ANCIENT NUCLEOTIDYLTRANSFERASE SUPERFAMILY [J].
HOLM, L ;
SANDER, C .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (09) :345-347
[16]   Structure of a covalently trapped catalytic complex of HIV-I reverse transcriptase: Implications for drug resistance [J].
Huang, HF ;
Chopra, R ;
Verdine, GL ;
Harrison, SC .
SCIENCE, 1998, 282 (5394) :1669-1675
[17]  
HUNTER WN, 1987, J BIOL CHEM, V262, P9962
[18]   Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal [J].
Kiefer, JR ;
Mao, C ;
Braman, JC ;
Beese, LS .
NATURE, 1998, 391 (6664) :304-307
[19]   MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES [J].
KRAULIS, PJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :946-950
[20]   DNA polymerase beta: Analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics [J].
Kraynov, VS ;
Werneburg, BG ;
Zhong, XJ ;
Lee, H ;
Ahn, JW ;
Tsai, MD .
BIOCHEMICAL JOURNAL, 1997, 323 :103-111