Boundedness of Calderon-Zygmund Operators on Non-homogeneous Metric Measure Spaces

被引:48
作者
Hytonen, Tuomas [2 ]
Liu, Suile [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2012年 / 64卷 / 04期
基金
芬兰科学院; 中国国家自然科学基金;
关键词
upper doubling; geometrical doubling; dominating function; weak type (1,1) estimate; Calderon-Zygmund operator; maximal operator; THEOREM; H-1; BMO;
D O I
10.4153/CJM-2011-065-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that mu({x}) = 0 for all x is an element of X. In this paper, we show that the boundedness of a Calderon-Zygmund operator T on L-2(mu) is equivalent to that of T on L-p(mu) for some p is an element of (1, infinity), and that of T from L-1(mu) to L-1,L- infinity (mu). As an application, we prove that if T is a Calderon-Zygmund operator bounded on L-2(mu), then its maximal operator is bounded on L-p(mu) for all p is an element of (1, infinity) and from the space of all complex-valued Borel measures on X to L-1,L- infinity (mu). All these results generalize the corresponding results of Nazarov et al. on metric spaces with measures satisfying the so-called polynomial growth condition.
引用
收藏
页码:892 / 923
页数:32
相关论文
共 19 条
[11]   A FRAMEWORK FOR NON-HOMOGENEOUS ANALYSIS ON METRIC SPACES, AND THE RBMO SPACE OF TOLSA [J].
Hytonen, Tuomas .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :485-504
[12]   BMO and H1 for the Ornstein-Uhlenbeck operator [J].
Mauceri, Giancarlo ;
Meda, Stefano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (01) :278-313
[13]   The Tb-theorem on non-homogeneous spaces [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
ACTA MATHEMATICA, 2003, 190 (02) :151-239
[14]  
Nazarov F, 1998, INT MATH RES NOTICES, V1998, P463
[15]  
Rudin W., 1987, REAL COMPLEX ANAL
[16]   Painleve's problem and the semiadditivity of analytic capacity [J].
Tolsa, X .
ACTA MATHEMATICA, 2003, 190 (01) :105-149
[17]   BMO, H1, and Calderon-Zygmund operators for non doubling measures [J].
Tolsa, X .
MATHEMATISCHE ANNALEN, 2001, 319 (01) :89-149
[19]  
[No title captured]