Boundedness of Calderon-Zygmund Operators on Non-homogeneous Metric Measure Spaces

被引:47
作者
Hytonen, Tuomas [2 ]
Liu, Suile [1 ]
Yang, Dachun [1 ]
Yang, Dongyong [3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2012年 / 64卷 / 04期
基金
中国国家自然科学基金; 芬兰科学院;
关键词
upper doubling; geometrical doubling; dominating function; weak type (1,1) estimate; Calderon-Zygmund operator; maximal operator; THEOREM; H-1; BMO;
D O I
10.4153/CJM-2011-065-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a separable metric measure space satisfying the known upper doubling condition, the geometrical doubling condition, and the non-atomic condition that mu({x}) = 0 for all x is an element of X. In this paper, we show that the boundedness of a Calderon-Zygmund operator T on L-2(mu) is equivalent to that of T on L-p(mu) for some p is an element of (1, infinity), and that of T from L-1(mu) to L-1,L- infinity (mu). As an application, we prove that if T is a Calderon-Zygmund operator bounded on L-2(mu), then its maximal operator is bounded on L-p(mu) for all p is an element of (1, infinity) and from the space of all complex-valued Borel measures on X to L-1,L- infinity (mu). All these results generalize the corresponding results of Nazarov et al. on metric spaces with measures satisfying the so-called polynomial growth condition.
引用
收藏
页码:892 / 923
页数:32
相关论文
共 19 条
[1]  
Anh B. T., J GEOM ANAL IN PRESS
[2]  
Bramanti M, 2010, REV MAT IBEROAM, V26, P347
[3]  
Coifman R.R., 1971, Lecture Notes in Mathematics, V242
[4]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[5]  
Duoandikoetxea J., 2001, Graduate Studies in Mathematics., V29
[6]  
Grafakos L., 2008, GRADUATE TEXTS MATH, V249
[7]  
Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1
[8]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[9]  
Hytonen T., J GEOM ANAL
[10]  
Hytonen T., MATH P CAMB IN PRESS