A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems

被引:1
作者
Chen, Yanping [1 ]
Lu, Zuliang [2 ,3 ]
Fu, Min [4 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
[3] Xiangtan Univ, Coll Civil Engn & Mech, Xiangtan 411105, Peoples R China
[4] Hunan Informat Sci Vocat Coll, Math Teaching & Res Grp, Changsha 410151, Hunan, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
nonlinear quadratic optimal control problems; mixed finite element approximation; a posteriori error estimates; SUPERCONVERGENCE; EQUATIONS;
D O I
10.1080/10556788.2011.582500
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we obtain an a posteriori error analysis for mixed finite element approximation of convex optimal control problems governed by a nonlinear second-order elliptic equation. Our results are based on the approximation for both the coupled state variables and the control variable. We propose to improve the error estimates, which can be used to construct an adaptive finite element scheme. A numerical example demonstrating our theoretical results is also presented in this paper.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[2]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[3]   Error estimates for the numerical approximation of a semilinear elliptic control problem [J].
Arada, N ;
Casas, E ;
Tröltzsch, F .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 23 (02) :201-229
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]  
Babuska I., 2001, NUMER MATH SCI COMP
[6]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[7]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[8]  
Brunner H., 2003, APPL NUMER MATH, V47, P173
[9]   A posteriori error estimate for the mixed finite element method [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :465-476
[10]  
Chen Y., 2002, RECENT PROGR COMP AP, V2, P123