Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

被引:20
作者
Helminiak, M. A. [1 ,2 ]
Yanar, N. M. [1 ,2 ]
Pettit, F. S. [1 ,2 ]
Taylor, T. A. [3 ]
Meier, G. H. [1 ,2 ]
机构
[1] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Praxair Surface Technol Inc, Indianapolis, IN 46224 USA
来源
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION | 2012年 / 63卷 / 10期
关键词
APS; durability; EBPVD; thickness; TBC; YSZ purity; BOND COATS; ZIRCONIA; OXIDATION; BEHAVIOR;
D O I
10.1002/maco.201206646
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.
引用
收藏
页码:929 / 939
页数:11
相关论文
共 18 条
[1]   Sintering and creep processes in plasma-sprayed thermal barrier coatings [J].
Ahrens, M ;
Lampenscherf, S ;
Vassen, R ;
Stöver, D .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2004, 13 (03) :432-442
[2]  
Bolcavage A., 2003, HEAT TREAT SURF ENG, P520
[3]   A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation [J].
Busso, EP ;
Lin, J ;
Sakurai, S ;
Nakayama, M .
ACTA MATERIALIA, 2001, 49 (09) :1515-1528
[4]   Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings [J].
Choi, SR ;
Zhu, DM ;
Miller, RA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (10) :2859-2867
[5]   A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings [J].
Cipitria, A. ;
Golosnoy, I. O. ;
Clyne, T. W. .
ACTA MATERIALIA, 2009, 57 (04) :980-992
[6]   Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings [J].
Guo, HB ;
Vassen, R ;
Stöver, D .
SURFACE & COATINGS TECHNOLOGY, 2005, 192 (01) :48-56
[7]  
Helminiak M., 2012, MAT HIGH TE IN PRESS
[8]   The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings [J].
Helminiak, M. A. ;
Yanar, N. M. ;
Pettit, F. S. ;
Taylor, T. A. ;
Meier, G. H. .
SURFACE & COATINGS TECHNOLOGY, 2009, 204 (6-7) :793-796
[9]   Cation transport in yttria stabilized cubic zirconia:: 96Zr tracer diffusion in (ZrxY1-x)O2-x/2 single crystals with 0.15≤x≤0.48 [J].
Kilo, M ;
Borchardt, G ;
Lesage, B ;
Kaïtasov, O ;
Weber, S ;
Scherrer, S .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2000, 20 (12) :2069-2077
[10]   Sintering and microstructure evolution in columnar thermal barrier coatings [J].
Krishnamurthy, Ramanathan ;
Srolovitz, David J. .
ACTA MATERIALIA, 2009, 57 (04) :1035-1048