Estimation in semi-parametric regression with non-stationary regressors

被引:26
作者
Chen, Jia [1 ]
Gao, Jiti [1 ]
Li, Degui [1 ]
机构
[1] Univ Adelaide, Sch Econ, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
asymptotic theory; nonparametric estimation; null recurrent time series; semi-parametric regression; NONPARAMETRIC-ESTIMATION; TIME-SERIES; MODELS;
D O I
10.3150/10-BEJ344
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a partially linear model of the form Y-t = X-t(tau)theta(0) + g(V-t) + epsilon(t), t = 1,...,n, where {V-t} is a beta null recurrent Markov chain, {X-t} is a sequence of either strictly stationary or non-stationary regressors and {epsilon(t)} is a stationary sequence. We propose to estimate both theta(0) and g(.) by a semi-parametric least-squares (SLS) estimation method. Under certain conditions, we then show that the proposed SLS estimator of theta(0) is still asymptotically normal with the same rate as for the case of stationary time series. In addition, we also establish an asymptotic distribution for the nonparametric estimator of the function g(.). Some numerical examples are provided to show that our theory and estimation method work well in practice.
引用
收藏
页码:678 / 702
页数:25
相关论文
共 34 条
[11]  
Fan J., 1996, Monographs on Statistics and Applied Probability, V66
[12]  
Fan J., 2003, Nonlinear Time Series: Nonparametric and Parametric Methods
[13]   NONPARAMETRIC SPECIFICATION TESTING FOR NONLINEAR TIME SERIES WITH NONSTATIONARITY [J].
Gao, Jiti ;
King, Maxwell ;
Lu, Zudi ;
Tjostheim, Dag .
ECONOMETRIC THEORY, 2009, 25 (06) :1869-1892
[14]   SPECIFICATION TESTING IN NONLINEAR AND NONSTATIONARY TIME SERIES AUTOREGRESSION [J].
Gao, Jiti ;
King, Maxwell ;
Lu, Zudi ;
Tjostheim, Dag .
ANNALS OF STATISTICS, 2009, 37 (6B) :3893-3928
[15]  
Hall P., 1980, Martingale Limit Theory and Its Application
[16]  
Hardle W, 1997, INT STAT REV, V65, P49
[17]  
Hardle W., 2000, CONTR STAT
[18]  
Hastie T., 1986, STAT SCI, V1, P297, DOI DOI 10.1214/SS/1177013604
[19]   Partially linear models with unit roots [J].
Juhl, T ;
Xiao, ZJ .
ECONOMETRIC THEORY, 2005, 21 (05) :877-906
[20]  
Karlsen HA, 2001, ANN STAT, V29, P372