Unconstrained methods for generalized nonlinear complementarity and variational inequality problems

被引:0
作者
Peng, JM [1 ]
机构
[1] CHINESE ACAD SCI,LSEC,INST COMPUTAT MATH & SCI ENGN COMP,BEIJING,PEOPLES R CHINA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct unconstrained methods for the generalized nonlinear complementarity problem and variational inequalities. Properties of the correspondent unconstrained optimization problem are studied. We apply these methods to the subproblems in trust region method, and study their interrelationships. Numerical results are also presented.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2003, Nonlinear programming: analysis and methods
[2]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[3]  
KANZOW C, 1993, 63 U HAMB I APPL M A
[4]  
Karamardian S., 1971, J. Optimization Theory Appl, V8, P161
[5]   SENSITIVITY ANALYSIS FRAMEWORK FOR VARIATIONAL-INEQUALITIES [J].
KYPARISIS, J .
MATHEMATICAL PROGRAMMING, 1987, 38 (02) :203-213
[6]  
KYPARISIS J, 1986, MATH PROG, V38, P105
[7]   NONLINEAR COMPLEMENTARITY AS UNCONSTRAINED AND CONSTRAINED MINIMIZATION [J].
MANGASARIAN, OL ;
SOLODOV, MV .
MATHEMATICAL PROGRAMMING, 1993, 62 (02) :277-297
[8]  
PENG JM, 1995, J COMPUT MATH, V13, P259
[9]   A GLOBALLY CONVERGENT NEWTON METHOD FOR SOLVING STRONGLY MONOTONE VARIATIONAL-INEQUALITIES [J].
TAJI, K ;
FUKUSHIMA, M ;
IBARAKI, T .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :369-383
[10]  
YUAN Y, 1992, 394 NO U WURZB I APP