Min-Max optimization-based design of fractional PID controller

被引:0
作者
Saidi, B. [1 ]
Amairi, M.
Najar, S.
Aoun, M.
机构
[1] Univ Gabes, Natl Engn Sch Gabes, Gabes, Tunisia
来源
201415TH INTERNATIONAL CONFERENCE ON SCIENCES & TECHNIQUES OF AUTOMATIC CONTROL & COMPUTER ENGINEERING (STA'2014) | 2014年
关键词
Fractional calculus; min-max optimization; robustness; stability;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with a new design method of a fractional PID controller. The proposed method is based on a numerical constrained Min-Max optimization algorithm. Its main objective is the improvement of the transient response, the stability margin, the robustness and the load disturbance rejection capability. All these performances are tested through a simulation example.
引用
收藏
页码:468 / 473
页数:6
相关论文
共 17 条
[1]  
Abraham A., 2008, P 10 ANN C GEN EV CO, P1445
[2]  
Amairi M., 2014, MULT SYST CONTR MSC, P1
[3]  
[Anonymous], 2010, 4 IFAC WORKSH FRACT
[4]  
[Anonymous], 4 C RECH APPL TRANSF
[5]  
[Anonymous], 2013, 10 INT MULT SYST SIG
[6]   The future of PID control [J].
Åström, KJ ;
Hägglund, T .
CONTROL ENGINEERING PRACTICE, 2001, 9 (11) :1163-1175
[7]  
Ben Hmed A., 2013, 2013 10th International Multi-Conference on Systems, Signals and Devices (SSD 2013), P1
[8]   Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers [J].
Chen, YangQuan ;
Bhaskaran, Tripti ;
Xue, Dingyue .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (02)
[9]   On the selection of tuning methodology of FOPID controllers for the control of higher order processes [J].
Das, Saptarshi ;
Saha, Suman ;
Das, Shantanu ;
Gupta, Amitava .
ISA TRANSACTIONS, 2011, 50 (03) :376-388
[10]  
Oustaloup A., 1995, La Derivation Non Entiere