Calculation of electronic excited states of molecules using the Helmholtz free-energy minimum principle

被引:35
作者
Pastorczak, Ewa [1 ]
Gidopoulos, Nikitas I. [2 ,3 ]
Pernal, Katarzyna [4 ]
机构
[1] Lodz Univ Technol, Fac Chem, Inst Appl Radiat Chem, PL-93590 Lodz, Poland
[2] HSIC, Rutherford Appleton Lab, STFC, ISIS, Didcot OX11 0QX, Oxon, England
[3] Univ Durham, Dept Phys, Durham DH1 3LE, England
[4] Lodz Univ Technol, Inst Phys, PL-90924 Lodz, Poland
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 06期
关键词
DENSITY-FUNCTIONAL THEORY; FRACTIONALLY OCCUPIED STATES; EXCITATION-ENERGIES; NEAR-DEGENERACY; HARTREE; ENSEMBLES; POTENTIALS; STABILITY; ATOMS;
D O I
10.1103/PhysRevA.87.062501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that the Helmholtz free-energy variational principle is the physical principle underlying the ensemble variational theory formulated in seminal papers by Theophilou and by Gross, Oliveira, and Kohn. A method of calculating electronic excitations of atoms and molecules is then proposed, based on the constrained minimization of the free energy. It involves the search for the optimal set of Slater determinant states to describe low electronic excitations and, in a second step, the search for optimal rotations in the space spanned by these states. Boltzmann factors are used as weights of states in the ensemble since for these the free energy achieves a minimum. The proposed method is applied to the Be atom and LiH and BH molecules. The method captures static electron correlation but naturally lacks dynamic correlation. To account for the latter, we describe short-range electron-electron interaction with a density functional, while the long-range part is still expressed by a wave-function method. Using the example of the LiH molecule, we find that the resulting method is able to capture both static and dynamic electron correlations.
引用
收藏
页数:11
相关论文
共 41 条
[21]   Investigation of exchange-correlation potentials in ensemble density functional theory:: parameter fitting and excitation energy [J].
Paragi, G ;
Gyémánt, IK ;
VanDoren, VE .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2001, 571 :153-161
[22]   Investigation of exchange potentials for excited states by parameter fitting [J].
Paragi, G ;
Gyémánt, IK ;
Van Doren, VE .
CHEMICAL PHYSICS LETTERS, 2000, 324 (5-6) :440-446
[23]   Excitation energies from range-separated time-dependent density and density matrix functional theory [J].
Pernal, Katarzyna .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (18)
[24]   Long-range density-matrix-functional theory: Application to a modified homogeneous electron gas [J].
Pernal, Katarzyna .
PHYSICAL REVIEW A, 2010, 81 (05)
[25]   A natural orbital functional for multiconfigurational states [J].
Piris, M. ;
Lopez, X. ;
Ruiperez, F. ;
Matxain, J. M. ;
Ugalde, J. M. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (16)
[26]   Iterative Diagonalization for Orbital Optimization in Natural Orbital Functional Theory [J].
Piris, M. ;
Ugalde, J. M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (13) :2078-2086
[27]   Exact Conditions in Finite-Temperature Density-Functional Theory [J].
Pittalis, S. ;
Proetto, C. R. ;
Floris, A. ;
Sanna, A. ;
Bersier, C. ;
Burke, K. ;
Gross, E. K. U. .
PHYSICAL REVIEW LETTERS, 2011, 107 (16)
[28]   Combining multideterminantal wave functions with density functionals to handle near-degeneracy in atoms and molecules [J].
Pollet, R ;
Savin, A ;
Leininger, T ;
Stoll, H .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (04) :1250-1258
[29]   Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg [J].
Prascher, Brian P. ;
Woon, David E. ;
Peterson, Kirk A. ;
Dunning, Thom H., Jr. ;
Wilson, Angela K. .
THEORETICAL CHEMISTRY ACCOUNTS, 2011, 128 (01) :69-82
[30]   Combining density-functional theory and density-matrix-functional theory [J].
Rohr, Daniel R. ;
Toulouse, Julien ;
Pernal, Katarzyna .
PHYSICAL REVIEW A, 2010, 82 (05)