Si(111) substrates as highly effective pseudomasks for selective growth of GaN material and devices by ammonia-molecular-beam epitaxy

被引:18
作者
Tang, H [1 ]
Haffouz, S [1 ]
Bardwell, JA [1 ]
机构
[1] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
关键词
D O I
10.1063/1.2199457
中图分类号
O59 [应用物理学];
学科分类号
摘要
The unique property of Si (111) as effective pseudomask substrate for selective growth of GaN by ammonia-molecular-beam epitaxy is reported. The critical nucleation temperature of GaN on Si (111) surface is found to be as low as 700 degrees C, much lower than that on sapphire or AlN surface. As a result, selective growth of GaN is possible by ammonia-molecular-beam epitaxy on Si (111) substrates using a patterned AlN buffer layer. The wide range of growth temperatures (700-900 degrees C) available for selective growth is a critical advantage for control and optimization of the facet characteristics of the selectively grown GaN patterns as required for potential fabrication of site-specific GaN or InGaN quantum dots. The demonstrated ease of selective growth of GaN on silicon has also implications in potential on-chip integration of GaN devices with silicon devices. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 9 条
[1]   AlGaN/GaN HEMTs on Si(111) with 6.6 W/mm output power density [J].
Behtash, R ;
Tobler, H ;
Neuburger, M ;
Schurr, A ;
Leier, H ;
Cordier, Y ;
Semond, F ;
Natali, F ;
Massies, J .
ELECTRONICS LETTERS, 2003, 39 (07) :626-628
[2]   High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates [J].
Frayssinet, E ;
Knap, W ;
Lorenzini, P ;
Grandjean, N ;
Massies, J ;
Skierbiszewski, C ;
Suski, T ;
Grzegory, I ;
Porowski, S ;
Simin, G ;
Hu, X ;
Khan, MA ;
Shur, MS ;
Gaska, R ;
Maude, D .
APPLIED PHYSICS LETTERS, 2000, 77 (16) :2551-2553
[3]   Selective area growth of GaN using gas source molecular beam epitaxy [J].
Gupta, VK ;
Averett, KL ;
Koch, MW ;
McIntyre, BL ;
Wicks, GW .
JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (03) :322-324
[4]   InGaN multiple quantum well laser diodes grown by molecular beam epitaxy [J].
Hooper, SE ;
Kauer, M ;
Bousquet, V ;
Johnson, K ;
Barnes, JM ;
Heffernan, J .
ELECTRONICS LETTERS, 2004, 40 (01) :33-34
[5]   SURFACE-DIFFUSION AND STEP-BUNCHING MECHANISMS OF METALORGANIC VAPOR-PHASE EPITAXY STUDIED BY HIGH-VACUUM SCANNING-TUNNELING-MICROSCOPY [J].
KASU, M ;
KOBAYASHI, N .
JOURNAL OF APPLIED PHYSICS, 1995, 78 (05) :3026-3035
[6]   Formation of GaN nanopillars by selective area growth using ammonia gas source molecular beam epitaxy [J].
Kawasaki, K ;
Nakamatsu, I ;
Hirayama, H ;
Tsutsui, K ;
Aoyagi, Y .
JOURNAL OF CRYSTAL GROWTH, 2002, 243 (01) :129-133
[7]   Effect of template morphology on the efficiency of InGaN/GaN quantum wells and light-emitting diodes grown by molecular-beam epitaxy [J].
Tang, H ;
Haffouz, S ;
Powell, A ;
Bardwell, JA ;
Webb, J .
APPLIED PHYSICS LETTERS, 2005, 86 (12) :1-3
[8]   Selective growth of GaN on a SiC substrate patterned with an AlN seed layer by ammonia molecular-beam epitaxy [J].
Tang, H ;
Bardwell, JA ;
Webb, JB ;
Moisa, S ;
Fraser, J ;
Rolfe, S .
APPLIED PHYSICS LETTERS, 2001, 79 (17) :2764-2766
[9]   Reproducibility of growing AlGaN/GaN high-electron-mobility-transistor heterostructures by molecular-beam epitaxy [J].
Tang, H ;
Webb, JB ;
Bardwell, JA ;
Rolfe, S ;
MacElwee, T .
SOLID-STATE ELECTRONICS, 2000, 44 (12) :2177-2182