Experimental study on AE behavior of hydraulic concrete under compression
被引:16
作者:
Su, Huaizhi Z.
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R ChinaHohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
Su, Huaizhi Z.
[1
,2
]
Tong, Jianjie J.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Engn Res Ctr Water Resources Efficient Utili, Nanjing 210098, Jiangsu, Peoples R ChinaHohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
Tong, Jianjie J.
[3
]
Hu, Jiang
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R ChinaHohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
Hu, Jiang
[2
]
Wen, Zhiping P.
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Inst Technol, Dept Comp Engn, Nanjing 211167, Jiangsu, Peoples R ChinaHohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
Wen, Zhiping P.
[4
]
机构:
[1] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
[3] Natl Engn Res Ctr Water Resources Efficient Utili, Nanjing 210098, Jiangsu, Peoples R China
[4] Nanjing Inst Technol, Dept Comp Engn, Nanjing 211167, Jiangsu, Peoples R China
The research work of this paper is to quantitatively evaluate the ongoing damage degree of existing concrete structures being loaded by applying acoustic emission (AE) monitoring. On the basis of some approximations and simplifications, the relation between the AE parameter (AE event) and the scalar damage parameter for concrete structures under uni-axial compression was derived, and was modeled as a simply linear correlation by combining the rate process theory and the traditional parameter-based technique of AE, Continuous Damage Mechanics (CDM) and nonlinear regression analysis. Meanwhile, the AE event-based stress-stain relation was also modeled too. The measured data of AE monitoring system and the strain dynamical strain system used in this work confirms significantly the effectiveness of the AE event-based damage evolution assessment for existing hydraulic concrete structures. The results of the experiments show that the AE event-based method permits a fast and effective in situ assessment of the ongoing damage phenomena in hydraulic concrete structures.