Electromyography data for non-invasive naturally-controlled robotic hand prostheses

被引:652
作者
Atzori, Manfredo [1 ]
Gijsberts, Arjan [2 ]
Castellini, Claudio [3 ]
Caputo, Barbara [4 ]
Hager, Anne-Gabrielle Mittaz [5 ]
Elsig, Simone [5 ]
Giatsidis, Giorgio [6 ]
Bassetto, Franco [6 ]
Muller, Henning [1 ]
机构
[1] Univ Appl Sci Western Switzerland HES SO Valais, Inst Informat Syst, Technoark 3, CH-3960 Sierre, Switzerland
[2] Inst Rech Idiap, CH-1920 Martigny, Switzerland
[3] DLR German Aerosp Ctr, Robot & Mechatron Ctr, D-82234 Oberpfaffenhofen, Germany
[4] Univ Roma La Sapienza, Dept Comp Control & Management Engn, I-00185 Rome, Italy
[5] Univ Appl Sci Western Switzerland HES SO Valais, Dept Phys Therapy, CH-3954 Leukerbad, Switzerland
[6] Padova Univ Hosp, Clin Plast Surg, I-35128 Padua, Italy
基金
瑞士国家科学基金会;
关键词
MYOELECTRIC CONTROL; ARM;
D O I
10.1038/sdata.2014.53
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent advances in rehabilitation robotics suggest that it may be possible for hand-amputated subjects to recover at least a significant part of the lost hand functionality. The control of robotic prosthetic hands using non-invasive techniques is still a challenge in real life: myoelectric prostheses give limited control capabilities, the control is often unnatural and must be learned through long training times. Meanwhile, scientific literature results are promising but they are still far from fulfilling real-life needs. This work aims to close this gap by allowing worldwide research groups to develop and test movement recognition and force control algorithms on a benchmark scientific database. The database is targeted at studying the relationship between surface electromyography, hand kinematics and hand forces, with the final goal of developing non-invasive, naturally controlled, robotic hand prostheses. The validation section verifies that the data are similar to data acquired in real-life conditions, and that recognition of different hand tasks by applying state-of-the-art signal features and machine-learning algorithms is possible.
引用
收藏
页数:13
相关论文
共 47 条
[1]  
Atkins DJ., 1996, J PROSTHET ORTHOT, V8, P2, DOI DOI 10.1097/00008526-199601000-00003
[2]  
Atzori M., 2014, NINAPRO REPOSITORY
[3]  
Atzori M., 2014, DRYAD
[4]  
Atzori M., 2012, 7 INT WORKSH BIOS IN, P239
[5]   Characterization of a Benchmark Database for Myoelectric Movement Classification [J].
Atzori, Manfredo ;
Gijsberts, Arjan ;
Kuzborskij, Ilja ;
Elsig, Simone ;
Hager, Anne-Gabrielle Mittaz ;
Deriaz, Olivier ;
Castellini, Claudio ;
Mueller, Henning ;
Caputo, Barbara .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (01) :73-83
[6]  
Atzori M, 2014, IEEE ENG MED BIO, P3545, DOI 10.1109/EMBC.2014.6944388
[7]   Personalized Neuroprosthetics [J].
Borton, David ;
Micera, Silvestro ;
Millan, Jose del R. ;
Courtine, Gregoire .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (210)
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Multi-subject/daily-life activity EMG-based control of mechanical hands [J].
Castellini, Claudio ;
Fiorilla, Angelo Emanuele ;
Sandini, Giulio .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2009, 6
[10]   Fine detection of grasp force and posture by amputees via surface electromyography [J].
Castellini, Claudio ;
Gruppioni, Emanuele ;
Davalli, Angelo ;
Sandini, Giulio .
JOURNAL OF PHYSIOLOGY-PARIS, 2009, 103 (3-5) :255-262