Autoregressive models of singular spectral matrices

被引:11
作者
Anderson, Brian D. O. [1 ,2 ]
Deistler, Manfred [3 ]
Chen, Weitian [1 ]
Filler, Alexander [3 ]
机构
[1] Australian Natl Univ, Res Sch Informat Sci & Engn, Canberra, ACT 0200, Australia
[2] Natl ICT Australia Ltd, Canberra Res Lab, Canberra, ACT 2601, Australia
[3] Vienna Univ Technol, Dept Math Methods Econ, A-1040 Vienna, Austria
基金
澳大利亚研究理事会; 奥地利科学基金会;
关键词
Autoregressive (AR) model; Canonical form; Matrix fraction description; DYNAMIC-FACTOR MODEL; INDEXES;
D O I
10.1016/j.automatica.2012.05.047
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with autoregressive (AR) models of singular spectra, whose corresponding transfer function matrices can be expressed in a stable AR matrix fraction description D-1(q)B with B a tall constant matrix of full column rank and with the determinantal zeros of D(q) all stable, i.e. in vertical bar q vertical bar > 1, q is an element of C. To obtain a parsimonious AR model, a canonical form is derived and a number of advantageous properties are demonstrated. First, the maximum lag of the canonical AR model is shown to be minimal in the equivalence class of AR models of the same transfer function matrix. Second, the canonical form model is shown to display a nesting property under natural conditions. Finally, an upper bound is provided for the total number of real parameters in the obtained canonical AR model, which demonstrates that the total number of real parameters grows linearly with the number of rows in W (q). (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2843 / 2849
页数:7
相关论文
共 15 条
[1]  
Anderson Brian D. O., 2008, SICE Journal of Control, Measurement, and System Integration, V1, P284, DOI 10.9746/jcmsi.1.284
[2]  
Anderson B. D. O., 2008, P IEEE CDC CANC MEX
[3]  
Banbura M., 2010, ECB WORKING PAPERS S
[4]   PROPERTIES OF THE PARAMETRIZATION OF MONIC ARMA SYSTEMS [J].
DEISTLER, M ;
GEVERS, M .
AUTOMATICA, 1989, 25 (01) :87-95
[5]   Generalized Linear Dynamic Factor Models: An Approach via Singular Autoregressions [J].
Deistler, Manfred ;
Anderson, Brian D. O. ;
Filler, Alexander ;
Zinner, Ch. ;
Chen, Weitan .
EUROPEAN JOURNAL OF CONTROL, 2010, 16 (03) :211-224
[6]  
Filler A., 2010, THESIS UT VIENNA
[7]   The generalized dynamic factor model: Representation theory [J].
Forni, M ;
Lippi, M .
ECONOMETRIC THEORY, 2001, 17 (06) :1113-1141
[8]   The generalized dynamic-factor model: Identification and estimation [J].
Forni, M ;
Hallin, M ;
Lippi, M ;
Reichlin, L .
REVIEW OF ECONOMICS AND STATISTICS, 2000, 82 (04) :540-554
[9]   ARMA MODELS, THEIR KRONECKER INDEXES AND THEIR MCMILLAN DEGREE [J].
GEVERS, MR .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (06) :1745-1761
[10]  
Giannone D., 2004, NBER MACROECONOMIC A