INSTABILITY OF ELLIPTIC EQUATIONS ON COMPACT RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE RICCI CURVATURE

被引:0
作者
Nascimento, Arnaldo S. [1 ]
Goncalves, Alexandre C. [2 ]
机构
[1] Univ Fed Sao Carlos, DM, BR-13560 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, FFCLRP, BR-14049 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Riemannian manifold; Ricci curvature; local minimizer; Gamma-convergence; reaction-diffusion equations; REACTION-DIFFUSION EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N-dimensional Riemannian manifolds without boundary and non-negative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant local minimizers for the same class of functionals.
引用
收藏
页数:18
相关论文
共 23 条