Humboldtian Diagnosis of Peach Tree (Prunus persica) Nutrition Using Machine-Learning and Compositional Methods

被引:20
作者
Betemps, Debora Leitzke [1 ,2 ]
de Paula, Betania Vahl [1 ]
Parent, Serge-Etienne [3 ]
Galarca, Simone P. [4 ]
Mayer, Newton A. [5 ]
Marodin, Gilmar A. B. [6 ]
Rozane, Danilo E. [7 ]
Natale, William [8 ]
Melo, George Wellington B. [9 ]
Parent, Leon E. [1 ,3 ]
Brunetto, Gustavo [1 ]
机构
[1] Univ Fed Santa Maria, Dept Solos, Av Roraima,1000 Camobi, BR-97105900 Santa Maria, RS, Brazil
[2] Univ Fed Fronteira Sul, Campus Cerro Largo,Av Jacob Reinaldo Haupenthal, BR-97900000 Cerro Largo, RS, Brazil
[3] Laval Univ, Dept Soils & Agrifood Engn, Quebec City, PQ G1V 0A6, Canada
[4] Ascar Emater Piratini, Rua 20 Setembro,158 Ctr, BR-96490000 Piratini, RS, Brazil
[5] Embrapa Clima Temperado, Ctr Pesquisa Agr Clima Temp, BR 392,Km 78, BR-96010971 Pelotas, RS, Brazil
[6] Univ Fed Rio Grande do Sul, Dept Hort & Silvicultura, Av Bento Goncalves 7712,CP 15-100, BR-91540000 Porto Alegre, RS, Brazil
[7] Univ Estadual Sao Paulo UNESP, Dept Engn Agron, Campus Registro,Av Nelson Brihi Badur, BR-11900000 Registro, SP, Brazil
[8] Univ Fed Ceara UFC, Dept Fitotecnia, Av Mister Hull,2977 Campus Pici, BR-60356000 Fortaleza, Ceara, Brazil
[9] Embrapa Uva & Vinho, Rua Livramento 515, BR-95701008 Bento Goncalves, RS, Brazil
来源
AGRONOMY-BASEL | 2020年 / 10卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
compositional entity; Humboldtian data sets; centered log ratio; machine learning; random forest; nutrient limitations; local diagnosis; peach trees; NITROGEN-FERTILIZATION; YIELD; ROOTSTOCKS; TEXTURE; RATES;
D O I
10.3390/agronomy10060900
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha(-1). Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in "enchanting islands". Successful specimens closest to defective specimens as shown by Euclidean distance allow reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.
引用
收藏
页数:21
相关论文
共 73 条
[11]  
daSilva F. C., 2009, Manual de analises quimicas de solos, plantas e fertilizantes, V2
[12]  
De Santos H.G., 2018, BRAZILIAN SOIL CLASS
[13]  
Delacour H, 2005, ANN BIOL CLIN-PARIS, V63, P145
[14]   RESOURCE USE EFFICIENCY IN AGRICULTURE [J].
DEWIT, CT .
AGRICULTURAL SYSTEMS, 1992, 40 (1-3) :125-151
[15]  
Diagnosis and Recommendation Integrated System (DRIS), 1973, SOIL SCI B
[16]   Groups of parts and their balances in compositional data analysis [J].
Egozcue, JJ ;
Pawlowsky-Glahn, V .
MATHEMATICAL GEOLOGY, 2005, 37 (07) :795-828
[17]   Isometric logratio transformations for compositional data analysis [J].
Egozcue, JJ ;
Pawlowsky-Glahn, V ;
Mateu-Figueras, G ;
Barceló-Vidal, C .
MATHEMATICAL GEOLOGY, 2003, 35 (03) :279-300
[18]  
Embrapa, UV VINH
[19]  
Embrapa, CLIM TEMP LAB AGR
[20]  
EPSTEIN E, 1972, P412