Some results of Young-type inequalities

被引:13
|
作者
Ren, Yonghui [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Arithmetic-geometric-harmonic; Kantorovich constant; Young-type inequalities; GEOMETRIC MEAN INEQUALITY;
D O I
10.1007/s13398-020-00880-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al. (Linear Multilinear Algebra 63(3):622-635, 2015) under some conditions. That is to say: when 0 < nu, tau < 1, a, b > 0, we have a del(nu)b - a#(nu)b/a del(tau)b - a#(tau)b <= nu(1 - nu)/tau(1 - tau) and (a del(nu)b)(2) - (a#(nu)b)(2)/(a del(tau)b)(2) - (a#(tau)b)(2) <= nu(1 - nu)/tau(1 - tau) for (b - a)( tau -nu) >= 0; and the inequalities are reversed if (b - a)(tau - nu) <= 0. In addition, we show a new Young-type inequality (1 - v(N+1) + v(N+2))a + (1 - v(2))b <= v(vN-(N+1))a(v)b(1-v) + (root a - root b)(2) for 0 <= nu <= 1, N is an element of N and a, b > 0. Then we can get some related results about operators, Hilbert-Schmidt norms, determinants by these scalars results.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Some results of Young-type inequalities
    Yonghui Ren
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [2] Young-type inequalities and their matrix analogues
    Alzer, Horst
    da Fonseca, Carlos M.
    Kovacec, Alexander
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03) : 622 - 635
  • [3] Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices
    Bani-Ahmad, Feras
    Rashid, Mohammad Hussein Mohammad
    OPEN MATHEMATICS, 2024, 22 (01):
  • [4] New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant
    Rashid, Mohammad H. M.
    Bani-Ahmad, Feras
    SPECIAL MATRICES, 2023, 11 (01):
  • [5] SOME REFINEMENTS OF YOUNG TYPE INEQUALITIES
    Yang, Changsen
    Zhang, Gege
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (02): : 519 - 531
  • [6] SOME REFINEMENTS OF YOUNG TYPE INEQUALITIES
    Zuo, Hongliang
    Li, Yuwei
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (03): : 1169 - 1178
  • [7] Some new Young type inequalities
    Ren, Yonghui
    AIMS MATHEMATICS, 2024, 9 (03): : 7414 - 7425
  • [8] Some Results of Reverses Young's Inequalities
    Rena, Yonghui
    Lia, Pengtong
    FILOMAT, 2022, 36 (08) : 2541 - 2550
  • [9] FURTHER NEW REFINEMENTS AND REVERSES OF REAL POWER FORM FOR YOUNG-TYPE INEQUALITIES VIA FAMOUS CONSTANTS AND APPLICATIONS
    Van, Doan Thi Thuy
    Huy, Duong Quoc
    OPERATORS AND MATRICES, 2023, 17 (02): : 485 - 486
  • [10] YOUNG TYPE INEQUALITIES FOR MATRICES
    Peng, Yang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 515 - 518