CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications

被引:106
作者
Cai, Peng [1 ,2 ]
Gao, Jiaoqi [1 ]
Zhou, Yongjin [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Biotechnol, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Dalian Univ Technol, Sch Life Sci & Biotechnol, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR-Cas9; Non-conventional yeasts; Genome editing; Guide RNA; Homologous recombination; Non-homologous end joining; METHYLOTROPHIC YEAST; HETEROLOGOUS PROTEIN; YARROWIA-LIPOLYTICA; PICHIA-PASTORIS; METABOLIC-FLUX; THERMOTOLERANT; EXPRESSION; PATHWAY; THERMOMETHANOLICA; CONSTRUCTION;
D O I
10.1186/s12934-019-1112-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Non-conventional yeasts are playing important roles as cell factories for bioproduction of biofuels, food additives and proteins with outstanding natural characteristics. However, the precise genome editing is challenging in non-conventional yeasts due to lack of efficient genetic tools. In the past few years, CRISPR-based genome editing worked as a revolutionary tool for genetic engineering and showed great advantages in cellular metabolic engineering. Here, we review the current advances and barriers of CRISPR-Cas9 for genome editing in non-conventional yeasts and propose the possible solutions in enhancing its efficiency for precise genetic engineering.
引用
收藏
页数:12
相关论文
共 70 条
[1]   Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production [J].
Ahmad, Mudassar ;
Hirz, Melanie ;
Pichler, Harald ;
Schwab, Helmut .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (12) :5301-5317
[2]   Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts [J].
Blank, LM ;
Lehmbeck, F ;
Sauer, U .
FEMS YEAST RESEARCH, 2005, 5 (6-7) :545-558
[3]   Tuning Gene Expression in Yarrowia lipolytica by a Hybrid Promoter Approach [J].
Blazeck, John ;
Liu, Leqian ;
Redden, Heidi ;
Alper, Hal .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (22) :7905-7914
[4]   Heterologous expression of an α-amylase inhibitor from common bean (Phaseolus vulgaris) in Kluyveromyces lactis and Saccharomyces cerevisiae [J].
Brain-Isasi, Stephanie ;
Alvarez-Lueje, Alejandro ;
Higgins, Thomas Joseph V. .
MICROBIAL CELL FACTORIES, 2017, 16
[5]   Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha [J].
Bredell, Helba ;
Smith, Jacques J. ;
Gorgens, Johann F. ;
van Zyl, Willem H. .
YEAST, 2018, 35 (09) :519-529
[6]   Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters [J].
Calik, Pinar ;
Ata, Ozge ;
Gunes, Hande ;
Massahi, Aslan ;
Boy, Erdem ;
Keskin, Abdullah ;
Ozturk, Sibel ;
Zerze, Gul H. ;
Ozdamar, Tuncer H. .
BIOCHEMICAL ENGINEERING JOURNAL, 2015, 95 :20-36
[7]   CRISPR-Mediated Genome Editing and Gene Repression in Scheffersomyces stipitis [J].
Cao, Mingfeng ;
Gao, Meirong ;
Ploessl, Deon ;
Song, Cunjiang ;
Shao, Zengyi .
BIOTECHNOLOGY JOURNAL, 2018, 13 (09)
[8]   Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering [J].
Cao, Mingfeng ;
Gao, Meirong ;
Lopez-Garcia, Carmen Lorena ;
Wu, Yutong ;
Seetharam, Arun Somwarpet ;
Severin, Andrew Josef ;
Shao, Zengyi .
ACS SYNTHETIC BIOLOGY, 2017, 6 (08) :1545-1553
[9]   Repair Pathway Choices and Consequences at the Double-Strand Break [J].
Ceccaldi, Raphael ;
Rondinelli, Beatrice ;
D'Andrea, Alan D. .
TRENDS IN CELL BIOLOGY, 2016, 26 (01) :52-64
[10]   CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair [J].
Charpentier, M. ;
Khedher, A. H. Y. ;
Menoret, S. ;
Brion, A. ;
Lamribet, K. ;
Dardillac, E. ;
Boix, C. ;
Perrouault, L. ;
Tesson, L. ;
Geny, S. ;
De Cian, A. ;
Itier, J. M. ;
Anegon, I. ;
Lopez, B. ;
Giovannangeli, C. ;
Concordet, J. P. .
NATURE COMMUNICATIONS, 2018, 9